Math, asked by GuruprasadPujari, 11 months ago

cotAcot4A+1/cotAcot4A-1=cos3A/cos5A​

Answers

Answered by MaheswariS
12

Answer:

\bf\frac{cotA\:cot4A+1}{cotA\:cot4A-1}=\frac{cos\:3A}{cos\:5A}

Step-by-step explanation:

CotAcot4A+1/cotAcot4A-1=cos3A/cos5A​

\frac{cotA\:cot4A+1}{cotA\:cot4A-1}

=\frac{\frac{cosA\:cos4A}{sinA\:sin4A}+1}{\frac{cosA\:cos4A}{sinA\:sin4A}-1}

=\frac{\frac{cosA\:cos4A+sinA\:sin4A}{sinA\:sin4A}}{\frac{cosA\:cos4A-sinA\:sin4A}{sinA\:sin4A}}

=\frac{cosA\:cos4A+sinA\:sin4A}{cosA\:cos4A-sinA\:sin4A}

using

\boxed{cos(A-B)=cosA\:cosB+sinA\:sinB}

\boxed{cos(A+B)=cosA\:cosB-sinA\:sinB}

=\frac{cos(A-4A)}{cos(A+4A)}

=\frac{cos(-3A)}{cos(5A)}

=\frac{cos\:3A}{cos\:5A}

\implies\boxed{\frac{cotA\:cot4A+1}{cotA\:cot4A-1}=\frac{cos\:3A}{cos\:5A}}

Similar questions