cotAtan(90-A)-sec(90-A)cosec+√3tan12°tan60°tan78°=2
Answers
Answered by
17
==================================
==================================
cot A tan (90°-A) - sec (90°-A) cosec A + {√3×tan 12°×tan 60°×tan 78°}
= (cot A × cot A) - (cosec A × cosec A) + {√3 × tan 12° × √3 × tan (90°-12°)}
= cot²A - cosec²A + {3 × tan 12 °× cot 12°}
= - (-cot²A + cosec²A) + {3×1}
= - (cosec²A - cot²A) + 3
= -1 +3
= 3-1
= 2 =
==================================
==================================
cot A tan (90°-A) - sec (90°-A) cosec A + {√3×tan 12°×tan 60°×tan 78°}
= (cot A × cot A) - (cosec A × cosec A) + {√3 × tan 12° × √3 × tan (90°-12°)}
= cot²A - cosec²A + {3 × tan 12 °× cot 12°}
= - (-cot²A + cosec²A) + {3×1}
= - (cosec²A - cot²A) + 3
= -1 +3
= 3-1
= 2 =
==================================
Vschahar2000:
thanks for helping me
Answered by
4
Answer:
L. H. S. =CotATan(90•-A) -sec(90•-A) cosecA+√3Tan12•Tan60•tan78•
=CotA CotA-cosecACosecA+Tan12•√3Tan60•Cot12•
=Cot^A-Cosec^A+Tan12•1/Tan12•√3Tan60•
=Cot^A-Cosec^A+(√3)^
=-1+3
=2. prove
Similar questions