CotB=12/5 . Prove that tan2 B - sin4 B=sin4 B*sec2 B
Answers
Answered by
4
Answer:
cotB=12/5=base/perpendicular
By Pythagorus's theorem, p²+b²=h²
Here, p=5, b=12
∴, h=√(5²+12²)=√(25+144)=√169=13
∴tanB=p/b=5/12, sinB=p/h=5/13, secB=13/12
∴, tan²B-sin²B
=(5/12)²-(5/13)²
=25/144-25/169
=25{(169-144)/24336}
=625/24336
sin⁴Bsec²B
=(5/13)⁴×(13/12)²
=5⁴/13²×1/12²
=625/169×144
=625/24336
∴, LHS=RHS (Proved)
i hope its helpful
Similar questions