Math, asked by priyanka6619, 11 months ago

(cotø + cosecø)²=1+cosø/1-cosø
pleace \:  help \: me \: to \: solve \: this


Anonymous: Mate, Mark my Ans as brainlist if it helps you:))
priyanka6619: are you happy.
Anonymous: Thanks:))
Anonymous: Did it helps you?))
priyanka6619: may be
Anonymous: that's means you didn't understand the procedure of my Ans:)
priyanka6619: I understand

Answers

Answered by Anonymous
1

Answer \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \\  \\ ( \cot(x)  +  \csc(x) ) {}^{2}  =  \frac{1 +  \cos(x) }{1 -  \cos(x) }  \\  \\ lhs \\  \\ ( \cot(x)  +   \csc(x) ) {}^{2}  \\  \\ replace \:  \:  \:  \:  \cot(x)  \:  \: by \:  \:  \frac{ \cos(x) }{ \sin(x) }  \\ and \\  \csc(x)  \:  \: by \:  \:  \frac{1}{ \sin(x) }  \\  \\  ( \frac{ \cos(x)  }{ \sin( x ) }  +  \frac{1}{ \sin(x) } ) {}^{2}  \\  \\  \frac{(1 +  \cos(x)) {}^{2}  }{ \sin {}^{2} (x) }  \\  \\   \frac{(1 +  \cos(x) ) {}^{2} }{(1 -  \cos {}^{2} (x)) }  \\  \\  \frac{(1 +  \cos(x)  )\times(1 +  \cos(x))  }{(1 +  \cos(x) ) \times (1 -  \cos(x) )}  \\  \\    \frac{1 +  \cos(x) }{1 -  \cos(x) }  \:  \: hence \: proved \:  \\  \\ Note\:  \:  \:  \:  \:  \\  \\  1) \:  \:  \: \sin {}^{2} (x)  = 1 -  \cos {}^{2} (x)  \\  \\ 2) \:  \: 1 -  \cos {}^{2} (x)  = (1 -  \cos(x) ) \times (1 +  \cos(x) ) \\  \\ here \:  \:  \: x \:  \:  =  \:  \: phi


priyanka6619: thank you
priyanka6619: friend
Answered by richapariya121pe22ey
1

Step-by-step explanation:

 { (\cot( \alpha ) +  \csc( \alpha )  )}^{2}  \\  =   { (\frac{ \cos( \alpha ) }{ \sin( \alpha ) } +  \frac{1}{ \sin( \alpha ) } ) }^{2}  \\  =  {( \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) } )}^{2}  \\  =  \frac{ {(1 +  \cos( \alpha ) )}^{2}   }{  { \sin( \alpha ) }^{2} }  \\  =  \frac{ {(1 +  \cos( \alpha )) }^{2} }{1 -  { \cos( \alpha ) }^{2} }  \\  =  \frac{ {(1 +  \cos( \alpha ) )}^{2} }{(1 +  \cos( \alpha ))(1 -  \cos( \alpha )  )}  \\  =  \frac{1 +  \cos( \alpha ) }{1 -  \cos( \alpha ) }

Please mark it as brainliest if you find it helpful.

Similar questions