cotsquare theta(sectheta-1/1(sintheta)+secsquare theta(sintheta-1/1+sectheta)=0 prove that
Answers
Solution
cot²∅(sec∅ - 1)/(1 + sin∅) + sec²∅(sin∅ - 1)/(1 + sec∅) = 0
Part 1 → cot²∅(1/cos∅ - 1)/(1 + sin∅)
→ cos²∅/sin²∅ × (1 - cos∅)/cos∅ × 1/(1 + sin∅)
→ cos∅(1 - cos∅)/sin²∅(1 + sin∅)
→ cos∅(1 - cos∅)/(1 - cos∅)(1 + cos∅)(1 + sin∅)
→ cos∅/(1 + cos∅)(1 + sin∅)
Part 2 → sec²∅(sin∅ - 1)/(1 + sec∅)
→ 1/cos²∅ × (sin∅ - 1) × cos∅/(1 + cos∅)
→ (sin∅ - 1)/cos(1 + cos∅)
→ Part 1 + Part 2
→ cos∅/(1 + cos∅)(1 + sin∅) + (sin∅ - 1)/cos∅(1 + cos∅)
→ (cos²∅ + sin²∅ - 1)/cos∅(1 + cos∅)(1 + sin∅)
→ (1 - 1)/cos∅(1 + cos∅)(1 + sin∅)
→ 0/cos∅(1 + cos∅)(1 + sin∅) = 0
Q.E.D
--------------------------------------------------
EXPLANATION —
cot²θ(secθ - 1)/(1 + sinθ) + sec²θ(sinθ - 1)/(1 + secθ) = 0
➡What we will do we will break into two part for easy calculation and finally will add them.
PART 1
=> cot²θ(1/cosθ - 1)/(1 + sinθ)
=> cos²θ/sin²θ × (1 - cosθ)/cosθ × 1/(1 + sinθ)
=>cosθ(1 - cosθ)/sin²θ(1 + sinθ)
=> cosθ(1 - cosθ)/(1 - cosθ)(1 + cosθ)(1 + sinθ)
=>cosθ/(1 + cosθ)(1 + sinθ)
--------------------------------------------------
PART 2
=> sec²θ(sinθ - 1)/(1 + secθ)
=> 1/cos²θ × (sinθ - 1) × cosθ/(1 + cosθ)
=> (sinθ - 1)/cos(1 + cosθ)
--------------------------------------------------
Now,
Final result = PART 1 + PART 2
=> cosθ/(1 + cosθ)(1 + sinθ) + (sinθ - 1)/cosθ(1 + cosθ)
=> (cos²θ + sin²θ - 1)/cosθ(1 + cosθ)(1 + sinθ)
=>(1 - 1)/cosθ(1 + cosθ)(1 + sinθ)
=> 0/cosθ(1 + cosθ)(1 + sinθ) = 0
Hence it is proved