Math, asked by themightyhunter, 3 months ago

cottheta-1/ cottheta+1 = 1-√3/ 1+√3 find the acute angle theta​

Attachments:

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf \: cotx = \dfrac{1}{tanx}}

 \boxed{ \sf \: tan60 \degree \:  =  \sqrt{3}}

 \boxed{ \sf \: cot60\degree = \dfrac{1}{ \sqrt{3}}}

\large\underline{\sf{Solution-}}

Method :- 1

\rm :\longmapsto\:\dfrac{cot \theta \: - 1 }{cot\theta \:  + 1}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

\rm :\longmapsto\:\dfrac{\dfrac{1}{tan\theta} - 1 }{\dfrac{1}{tan\theta} + 1}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

\rm :\longmapsto\:\dfrac{\dfrac{1 - tan\theta}{ \cancel{tan\theta}}}{ \:  \: \dfrac{1 + tan\theta}{ \cancel{tan\theta}} \:  \:  }  = \dfrac{1 -  \sqrt{3} }{ \:  \: 1 +  \sqrt{3}  \:  \: }

\rm :\longmapsto\:\dfrac{1 - tan\theta}{1 + tan\theta}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

So, on comparing we get

\rm :\longmapsto\:tan\theta \:  =  \:  \sqrt{3}

\rm :\longmapsto\:tan\theta \:  =  \: tan60\degree

\bf\implies \:\theta \:  =  \: 60\degree

Method:- 2

\rm :\longmapsto\:\dfrac{cot\theta \: - 1 }{cot\theta \:  + 1}  = \dfrac{1 -  \sqrt{3} }{1 +  \sqrt{3} }

\rm :\longmapsto\:(cot\theta - 1)(1 +  \sqrt{3}) = (cot\theta + 1)(1 -  \sqrt{3})

\rm :\longmapsto\:cot\theta +  \sqrt{3}cot\theta - 1 -  \sqrt{3}  =  cot\theta + 1 -  \sqrt{3} -  \sqrt{3}cot\theta

\rm :\longmapsto\: \sqrt{3}cot\theta - 1 = 1 -  \sqrt{3}cot\theta

\rm :\longmapsto\:2 \sqrt{3}cot\theta = 2

\rm :\longmapsto\:cot\theta = \dfrac{1}{ \sqrt{3} }

\rm :\longmapsto\:cot\theta = cot60\degree

\bf\implies \:\theta = 60\degree

Additional Information :-

 \boxed{ \sf \: cosecx =  \dfrac{1}{sinx}}

 \boxed{ \sf \: secx =  \dfrac{1}{cosx}}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions