Cotx/cosec x-1 = ✓1+sin x /1-sin x
Answers
Answered by
3
Answer:
QED
Step-by-step explanation:
Cotx/(cosec x-1) = ✓1+sin x /1-sin x
cotx = cosx/Sinx & Cosec x = 1/Sinx
=> (cosx/Sinx) /(1/Sinx - 1) = ✓((1+sin x) /(1-sin x))
=> (Cosx/Sinx)/((1 - Sinx)/Sinx) =✓((1+sin x) /(1-sin x))
Cancelling Sinx
=> Cosx/(1 - Sinx) = ✓((1+sin x) /(1-sin x))
as we know that Cos²x = 1 - Sin²x
=> Cosx = √(1 - Sin²x)
=> Cosx = √(1+sinx)(1-Sinx)
1-Sinx = √(1-Sinx)×√(1-Sinx)
putting these values
=> (√(1+sinx)(1-Sinx)) / (√(1-Sinx)×√(1-Sinx)) = ✓((1+sin x) /(1-sin x))
cancelling √(1-Sinx)
=> √(1+sinx) / √(1-Sinx) = ✓((1+sin x) /(1-sin x))
=> √((1+sinx) /(1-Sinx)) = ✓((1+sin x) /(1-sin x))
=> LHS = RHS
QED
Similar questions