(cotx-cosecx)^2=(secx-1)/(secx+1)
Answers
Answered by
2
(cotx-cosecx)^2=(cosx-1)^2/sin^2x
=(cosx-1)^2/(1-cosx)(1+cosx)
=(1-cosx)^2/(1-cosx)(1+cosx)
=(1-cosx)/(1+cosx)
now divide above and below by cosx
=(1/cosx-cosx/cosx)/(1/cosx-cosx/cosx)
=(secx-1)/(secx+1)
=(cosx-1)^2/(1-cosx)(1+cosx)
=(1-cosx)^2/(1-cosx)(1+cosx)
=(1-cosx)/(1+cosx)
now divide above and below by cosx
=(1/cosx-cosx/cosx)/(1/cosx-cosx/cosx)
=(secx-1)/(secx+1)
Similar questions