Math, asked by RISINGBOY, 2 days ago

coty is In the given figure, if D is mid-point of BC, then value of cot y/cot x is

(a) 2
(b) 1/4
(c) 1/3
(d)1/2


please answer the question asap and please explain the answer​

Attachments:

Answers

Answered by shawsoni554
0

Answer:

2 is the answer i think so

Answered by AadityaSingh01
3

Concept:-

Here, It is given that a right ΔACB with median AD. And because of median we got two right angled triangle's   i.e., ΔACD and ΔACB.

Given:-

  • AD is the median of ΔACB,  i.e., CD = DB

  • x = ∠DAC and y = ∠BAC.

To Find:-

  • \sf{\dfrac{\cot\ y}{\cot\ x}} =\ ?}

Solution:-

Here, We first find the value of cot y.

\sf{\longrightarrow \cot\ y =\ \dfrac{base}{perpendicular} }

\sf{\longrightarrow \cot\ y =\ \dfrac{AC}{BC} }                           [ ∵ Taking AC as base ]

\sf{\longrightarrow \cot\ y =\ \dfrac{AC}{CD + DB} }  

\sf{\longrightarrow \cot\ y =\ \dfrac{AC}{2CD}}                ----- (i)           [ ∵ CD = DB ]

Now, Value of cot x.

\sf{\longrightarrow \cot\ x =\ \dfrac{base}{perpendicular} }

\sf{\longrightarrow \cot\ x =\ \dfrac{AC}{CD} }               ----- (ii)          [ ∵ Taking AC as base ]

From equation (i) and (ii) we have,

\sf{\Longrightarrow \dfrac{\cot\ y}{\cot\ x}} =\ \dfrac{\dfrac{AC}{2CD}}{\dfrac{AC}{CD}} }

\sf{\Longrightarrow \dfrac{\cot\ y}{\cot\ x}} =\ \dfrac{AC}{2CD} \times \dfrac{CD}{AC}}

\sf{\Longrightarrow \dfrac{\cot\ y}{\cot\ x}} =\ \dfrac{1}{2} \times \dfrac{1}{1}}

\sf{\Longrightarrow \dfrac{\cot\ y}{\cot\ x}} =\ \dfrac{1}{2}

\sf{Hence,\ We\ got\ the\ answer\  \dfrac{\cot\ y}{\cot\ x}} =\ \dfrac{1}{2}.

Option (d) is correct.

Similar questions