English, asked by anubhav8322, 1 year ago

could explain how
(a - b) { }^{2}  = (a + b) {}^{ { }^{2} }  - 4ab


Anonymous: ___k off

Answers

Answered by zaidazmi8442
0

rhs \\   \:  \:  \: {(a + b)}^{2}  - 4ab \\  =  {a}^{2}  +  {b}^{2}  + 2ab - 4ab \\  =   {a}^{2}  +  {b}^{2} - 2ab \\  =  {(a - b)}^{2}  lhs

Answered by Anonymous
6

Solution :

Given , (a - b) { }^{2} = (a + b) {}^{ { }^{2} } - 4ab

Let's Solve Right Hand Side i.e RHS term

( a + b )² - 4ab

↪ a² + b² + 2ab - 4ab [ ∵ ( a+b)² = a² + b² + 2ab ]

↪ a² + b² - 2ab

↪( a - b )². [ ∵ ( a - b)² = a² + b² - 2ab ]

↪( a - b )² = LHS

It's Proved

Some Important Formula :

(I) ( a - b)² = a² + b² - 2ab

(ii) ( a+b)² = a² + b² + 2ab

Similar questions