Math, asked by Yazhini186, 1 year ago

Could u plz solve this
Sin2x=3tanx cos2x

Answers

Answered by lublana
4

Given equation is Sin(2x)=3tanx*cos(2x)

\frac{Sin(2x)}{cos(2x)}=3tanx

tan(2x)=3tan(x)

\frac{2tan(x)}{(1-tan^2(x))} = 3tan(x)  [using expansion of tan(2x) ]


2tan(x) = 3tan(x)(1-tan^2(x))

Let tan(x)=y then above equation becomes:

2y=3y(1-y^2)

2y=3y-3y^3

3y^3-y=0

y(3y^2-1)=0

y=0 or 3y^2-1=0

y=0 or 3y^2=1

y=0 or y^2=\frac{1}{3}

y=0 or y= \pm \frac{1}{\sqrt{3}}

So now we have three values of y=0, y=\frac{1}{\sqrt{3}}, y=-\frac{1}{\sqrt{3}}


replace y with tan(x)

=> tan(x)=0, tan(x)=\frac{1}{\sqrt{3}}, tan(x)=-\frac{1}{\sqrt{3}}


Now we solve each equation:

Solution for tan(x)=0

tan(x)=tan(0)

[ Apply formula tan(a)=tan(b) => a=n \pi +b ]

x=n \pi +0  , where n is integer


--------

Solution for tan(x)=\frac{1}{\sqrt{3}}

tan(x)=tan(\frac{\pi}{6})

[ Apply formula tan(a)=tan(b) => a=n \pi +b ]

x=n \pi +\frac{\pi}{6}  , where n is integer


--------

Solution for tan(x)=-\frac{1}{\sqrt{3}}

tan(x)=tan(-\frac{\pi}{6})

[ Apply formula tan(a)=tan(b) => a=n \pi +b ]

x=n \pi -\frac{\pi}{6}  , where n is integer



Similar questions