Math, asked by nidhishpohane, 11 months ago

Could you please help me with this problem of integration ​

Attachments:

Answers

Answered by shadowsabers03
8

\displaystyle\int4(z^2+2z+1)\ dz

Since 4 is just a constant, we can take it outside the integral.

\displaystyle 4\int(z^2+2z+1)\ dz

Now we can split each term as,

\displaystyle 4\int z^2\cdot dz+4\int 2z\cdot dz+4\int 1\cdot dz

We know  \displaystyle\int z^n\cdot dz=\dfrac{z^{n+1}}{n+1}.

So,

\displaystyle 4\int z^2\cdot dz+4\int 2z\cdot dz+4\int 1\cdot dz\\ \\ \\ \Longrightarrow\ 4\cdot\dfrac{z^3}{3}+8\int z\cdot dz+4\int dz\\ \\ \\ \Longrightarrow\ \dfrac{4z^3}{3}+8\cdot\dfrac{z^2}{2}+4z\\ \\ \\ \Longrightarrow\ \dfrac{4}{3}z^3+4z^2+4z\\ \\ \\ \Longrightarrow\ 4\left(\dfrac{1}{3}z^3+z^2+z\right)

Or we can do the following:

\begin{aligned}&\int4(z^2+2z+1)\ dz\\ \\ \Longrightarrow\ \ &4\int(z^2+2z+1)\ dz\\ \\ \Longrightarrow\ \ &4\left(\int z^2\dcot dz+\int 2z\cdot dz+\int 1\cdot dz\right)\\ \\ \Longrightarrow\ \ &4\left(\dfrac{z^3}{3}+2\cdot\dfrac{z^2}{2}+z\right)\\ \\ \Longrightarrow\ \ &4\left(\dfrac{1}{3}z^3+z^2+z\right)\end{aligned}

Hence integrated!

Answered by Anonymous
24

\huge\underline\textbf{Answer:-}

Refer the given attachment:-

Attachments:
Similar questions