Courtney walked from her house to the beach at a constant speed of 444 kilometers per hour, and then walked from the beach to the park at a constant speed of 555 kilometers per hour. The entire walk took 222 hours and the total distance Courtney walked was 888 kilometers.
Let bbb be the number of hours it took Courtney to walk from her house to the beach, and ppp the number of hours it took her to walk from the beach to the park.
Which system of equations represents this situation?
Answers
Answered by
3
Given:
- Speed of walking from house to beach is 4 kmph
- Speed of walking from beach to park is 5 kmph
- Entire walk took 2 hours
- Total walked = 8 km
Solution:
Let, b hours were taken for house to beach and p hours were taken for beach to park.
Given, total time = 2 hours.
Then, b + p = 2
In b hours with the speed of 4 kmph, Courtney walked 4b km and in p hours with the speed 5 kmph, she walked 5p km
Given, total distance = 8 km
Then, 4b + 5p = 8
The required system of linear equations is
b + p = 2
4b + 5p = 8.
Similar questions