Math, asked by tirampuramtejaswini, 2 months ago

cramers rule 3x - 4y = 10 ; 4x + 3y = 5​

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:3x - 4y = 10

and

\rm :\longmapsto\:4x  + 3y = 5

The above equation in matrix form can be represented as

\rm :\longmapsto\:A = \bigg[ \begin{matrix}3& - 4 \\ 4&3 \end{matrix} \bigg]

\rm :\longmapsto\:X \:  =  \: \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c}10\\5\end{array}\right]\end{gathered}

So that, AX = B

Now, Consider

\rm :\longmapsto\: |A|  = \begin{array}{|cc|}\sf 3 &\sf  - 4  \\ \sf 4 &\sf 3 \\\end{array}

\rm \:  =  \:  \: 3 \times 3 - 4 \times ( - 4)

\rm \:  =  \:  \: 9 + 16

\rm \:  =  \:  \: 25

This implies, system of equations is consistent having unique solution.

Now, Consider

\rm :\longmapsto\:D_1 = \begin{array}{|cc|}\sf 10 &\sf  - 4  \\ \sf 5 &\sf  3 \\\end{array}

\rm \:  =  \:  \: 10 \times 3 - 5 \times ( - 4)

\rm \:  =  \:  \: 30 + 20

\rm \:  =  \:  \: 50

Now, Consider

\rm :\longmapsto\: |D_2|  = \begin{array}{|cc|}\sf 3 &\sf  10  \\ \sf 4 &\sf 5 \\\end{array}

\rm \:  =  \:  \: 3 \times 5 - 4 \times 10

\rm \:  =  \:  \: 15 - 40

\rm \:  =  \:  \:  - 25

Now,

\rm :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{50}{25} = 2

and

\rm :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{ - 25}{25} =  -  \: 1

Verification

Consider the first equation

\rm :\longmapsto\:3x - 4y = 10

On substituting the values of x and y, we get

\rm :\longmapsto\:3(2) - 4( - 1)= 10

\rm :\longmapsto\:6  + 4= 10

\rm :\longmapsto\:10= 10

Hence, Verified

Consider the second equation

\rm :\longmapsto\:4x  + 3y = 5

On substituting the values of x and y, we get

\rm :\longmapsto\:4(2)  + 3( - 1) = 5

\rm :\longmapsto\:8 - 3= 5

\rm :\longmapsto\:5= 5

Hence, Verified

Similar questions