Create a Decision tree classifier in sci-kit learn using the Data given below,
features = [[2,100],[6,25],[1,300],[1,1000],[4,100],[10,100]]
Label = [1,2,1,1,2,2]
Note : 1 - Sports/Race Car and 2 - Family Car
Answers
Answered by
0
Answer:
from sklearn.tree import DecisionTreeClassifier
features = [[2, 100], [6, 25], [1, 300], [1, 1000], [4, 100], [10, 100]]
Label = [1, 2, 1, 1, 2, 2]
clf = DecisionTreeClassifier(random_state=0)
clf.fit(features,Label)
x1,x2 = input().split()
print(clf.predict([[x1, x2]]))
#SPJ3
Similar questions