Create a decision tree classifier in scikit learn using data given below
Features =[[2,100],[6,25],[1,300],[1,1000],[4,100],[10,100]
Label=[1,2,1,1,2,2]
Note :1 - sports/race car and 2 - family car
Answers
Answered by
0
Answer:
from sklearn.tree import DecisionTreeClassifier
feature=[[2,100],[6,25],[1,300],[1,1000],[4,100],[10,100]]
Label=[1,2,1,1,2,2]
clf=DecisionTreeClassifier(random_state=0)
clf.fit(features,Label)
x1,x2=input().split()
print(clf.predict([[x1,x2]]))
Similar questions