create two magic squares of size3x3 using rational numbers and show that the sum of row, column and diagonals are same
Answers
Answered by
0
Answer:
Sum of the rows
Row 1 = 5+\left(-1\right)+\left(-4\right)5+(−1)+(−4)
5-1-4\ =\ 05−1−4 = 0
Row 2 = \left(-5\right)+\left(-2\right)\ +7(−5)+(−2) +7
-5-2+7\ \ =0−5−2+7 =0
Row 3 = 0+3+\left(-3\right)0+3+(−3)
0+3-3\ \ =0\0+3−3 =0
Sum of the columns
Column 1 = 5+\left(-5\right)+05+(−5)+0
5-5+0\ =\ 05−5+0 = 0
Column 2 = \left(-1\right)+\left(-2\right)+\ 3\(−1)+(−2)+ 3
-1-2+3\ \ =\ 0−1−2+3 = 0
Column 3 = \left(-4\right)+7\ +\left(-3\right)(−4)+7 +(−3)
-4\ +7\ -3\ \ =\ 0−4 +7 −3 = 0
Sum of the diagonals
Diagonal 1
\left(5\right)+\left(-2\right)+\left(-3\right)(5)+(−2)+(−3)
5-2-3\ \ =\ 05−2−3 = 0
Diagonal 2
\left(-4\right)+\left(-2\right)\ +0\(−4)+(−2) +0
-4-2+0\ =\ -6−4−2+0 = −6
Box (i) is not a square because all the sums not equal.
Similar questions