Math, asked by jenitify, 6 months ago

creative writing about the application of pythagoras theorem​....

Answers

Answered by trishlasinha2100
1

Step-by-step explanation:

The Pythagorean Theorem

According to the Pythagorean Theorem, “In a right triangle, the square of the hypotenuse is equal to the sum of the square of the other two sides of the triangle.” The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the Pythagorean equation

In terms of area, it states:

In any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

In a simple example of how the Pythagorean Theorem might be used, someone might be wondering about how long it would take to cut across a rectangular plot of land, rather than skirting the edges, relying on the principle that a rectangle can be divided into two simple right triangles. He or she could measure two adjoining sides, determine their squares, add the squares together, and find the square root of the sum to determine the length of the plot’s diagonal.

Like other mathematical theorems, the Pythagorean Theorem relies on proofs. Each proof is designed to create more supporting evidence to show that the theorem is correct, by demonstrating various applications, showing the shapes that the Pythagorean Theorem cannot be applied to, and attempting to disprove the Pythagorean Theorem to show, in reverse, that the logic behind the theorem is found. Because the Pythagorean Theorem is one of the oldest math theorems in use today, it is also one of the most heavily proved, with hundreds of proofs by mathematicians throughout history adding to the body of evidence which shows that the theorem is valid.

Answered by sheliadhikary00633
1

Answer:

There are an uncountable number of topics that students are expected to cover each year in school. For example, they are expected to learn about right triangles, similar triangles, and polygons. We expect them to learn about angles, lines, and graphs. One of the topics that almost every high school geometry student learns about is the Pythagorean Theorem.

According to the Pythagorean Theorem, “In a right triangle, the square of the hypotenuse is equal to the sum of the square of the other two sides of the triangle.” The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the Pythagorean equation

In terms of area, it states:

In any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

In a simple example of how the Pythagorean Theorem might be used, someone might be wondering about how long it would take to cut across a rectangular plot of land, rather than skirting the edges, relying on the principle that a rectangle can be divided into two simple right triangles. He or she could measure two adjoining sides, determine their squares, add the squares together, and find the square root of the sum to determine the length of the plot’s diagonal.

In any right triangle, the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares whose sides are the two legs. This theorem is talking about the area of the squares that are built on each side of the right triangle.

Over the years there have been many mathematicians and non-mathematicians to give various proofs of the Pythagorean Theorem. Following are proofs from Bhaskara and one of our former presidents, President James Garfield. I have chosen these proofs because any of them would be appropriate to use in any classroom.

Similar questions