English, asked by ayushgupta3692, 9 days ago

creative writing write a paragraph on the​

Answers

Answered by HuYaarKoiTo
10

Explanation:

EXPLANATION.

Ratio in which the line 2y - 3x = 8 divides the line segment joining the points (1, 4) and (-2,3).

As we know that,

Section formula for internal division.

\sf \implies \dfrac{mx_{2} + nx_{1}}{m + n} \ , \ \dfrac{my_{2} + ny_{1}}{m + n}⟹

m+n

mx

2

+nx

1

,

m+n

my

2

+ny

1

Using this formula in the equation, we get.

Let the line 2y - 3x = 8 divides the line segment in the ratio = k : 1.

⇒ x₁ = 1 and y₁ = 4.

⇒ x₂ = - 2 and y₂ = 3.

⇒ m = k and n = 1.

Put the values in the equation, we get.

\sf \implies \dfrac{k(-2) + 1(1)}{k + 1} \ , \ \dfrac{k(3) + 1(4)}{k + 1}⟹

k+1

k(−2)+1(1)

,

k+1

k(3)+1(4)

\sf \implies \dfrac{-2k + 1}{k + 1} \ , \ \dfrac{3k + 4}{k + 1}⟹

k+1

−2k+1

,

k+1

3k+4

Equation of line : 2y - 3x = 8.

Put the values of x and y in the equation of line, we get.

\sf \implies 2 \bigg[ \dfrac{3k + 4}{k + 1} \bigg] - 3 \bigg[ \dfrac{-2k + 1}{k + 1} \bigg] = 8⟹2[

k+1

3k+4

]−3[

k+1

−2k+1

]=8

\sf \implies \bigg[ \dfrac{6k + 8}{k + 1} \bigg] - \bigg[ \dfrac{- 6k + 3}{k + 1} \bigg] = 8⟹[

k+1

6k+8

]−[

k+1

−6k+3

]=8

\sf \implies (6k + 8) - (-6k + 3) = 8(k + 1)⟹(6k+8)−(−6k+3)=8(k+1)

\sf \implies 6k + 8 + 6k - 3 = 8k + 8⟹6k+8+6k−3=8k+8

\sf \implies 12k + 5 = 8k + 8⟹12k+5=8k+8

\sf \implies 12k - 8k = 8 - 5⟹12k−8k=8−5

\sf \implies 4k = 3⟹4k=3

\sf \implies k = \dfrac{3}{4}⟹k=

4

3

Ratio = 3 : 4.

Answered by HuYaarKoiTo
7

Explanation:

EXPLANATION.

Ratio in which the line 2y - 3x = 8 divides the line segment joining the points (1, 4) and (-2,3).

As we know that,

Section formula for internal division.

\sf \implies \dfrac{mx_{2} + nx_{1}}{m + n} \ , \ \dfrac{my_{2} + ny_{1}}{m + n}⟹

m+n

mx

2

+nx

1

,

m+n

my

2

+ny

1

Using this formula in the equation, we get.

Let the line 2y - 3x = 8 divides the line segment in the ratio = k : 1.

⇒ x₁ = 1 and y₁ = 4.

⇒ x₂ = - 2 and y₂ = 3.

⇒ m = k and n = 1.

Put the values in the equation, we get.

\sf \implies \dfrac{k(-2) + 1(1)}{k + 1} \ , \ \dfrac{k(3) + 1(4)}{k + 1}⟹

k+1

k(−2)+1(1)

,

k+1

k(3)+1(4)

\sf \implies \dfrac{-2k + 1}{k + 1} \ , \ \dfrac{3k + 4}{k + 1}⟹

k+1

−2k+1

,

k+1

3k+4

Equation of line : 2y - 3x = 8.

Put the values of x and y in the equation of line, we get.

\sf \implies 2 \bigg[ \dfrac{3k + 4}{k + 1} \bigg] - 3 \bigg[ \dfrac{-2k + 1}{k + 1} \bigg] = 8⟹2[

k+1

3k+4

]−3[

k+1

−2k+1

]=8

\sf \implies \bigg[ \dfrac{6k + 8}{k + 1} \bigg] - \bigg[ \dfrac{- 6k + 3}{k + 1} \bigg] = 8⟹[

k+1

6k+8

]−[

k+1

−6k+3

]=8

\sf \implies (6k + 8) - (-6k + 3) = 8(k + 1)⟹(6k+8)−(−6k+3)=8(k+1)

\sf \implies 6k + 8 + 6k - 3 = 8k + 8⟹6k+8+6k−3=8k+8

\sf \implies 12k + 5 = 8k + 8⟹12k+5=8k+8

\sf \implies 12k - 8k = 8 - 5⟹12k−8k=8−5

\sf \implies 4k = 3⟹4k=3

\sf \implies k = \dfrac{3}{4}⟹k=

4

3

Ratio = 3 : 4.

Answered by HuYaarKoiTo
6

Explanation:

EXPLANATION.

Ratio in which the line 2y - 3x = 8 divides the line segment joining the points (1, 4) and (-2,3).

As we know that,

Section formula for internal division.

\sf \implies \dfrac{mx_{2} + nx_{1}}{m + n} \ , \ \dfrac{my_{2} + ny_{1}}{m + n}⟹

m+n

mx

2

+nx

1

,

m+n

my

2

+ny

1

Using this formula in the equation, we get.

Let the line 2y - 3x = 8 divides the line segment in the ratio = k : 1.

⇒ x₁ = 1 and y₁ = 4.

⇒ x₂ = - 2 and y₂ = 3.

⇒ m = k and n = 1.

Put the values in the equation, we get.

\sf \implies \dfrac{k(-2) + 1(1)}{k + 1} \ , \ \dfrac{k(3) + 1(4)}{k + 1}⟹

k+1

k(−2)+1(1)

,

k+1

k(3)+1(4)

\sf \implies \dfrac{-2k + 1}{k + 1} \ , \ \dfrac{3k + 4}{k + 1}⟹

k+1

−2k+1

,

k+1

3k+4

Equation of line : 2y - 3x = 8.

Put the values of x and y in the equation of line, we get.

\sf \implies 2 \bigg[ \dfrac{3k + 4}{k + 1} \bigg] - 3 \bigg[ \dfrac{-2k + 1}{k + 1} \bigg] = 8⟹2[

k+1

3k+4

]−3[

k+1

−2k+1

]=8

\sf \implies \bigg[ \dfrac{6k + 8}{k + 1} \bigg] - \bigg[ \dfrac{- 6k + 3}{k + 1} \bigg] = 8⟹[

k+1

6k+8

]−[

k+1

−6k+3

]=8

\sf \implies (6k + 8) - (-6k + 3) = 8(k + 1)⟹(6k+8)−(−6k+3)=8(k+1)

\sf \implies 6k + 8 + 6k - 3 = 8k + 8⟹6k+8+6k−3=8k+8

\sf \implies 12k + 5 = 8k + 8⟹12k+5=8k+8

\sf \implies 12k - 8k = 8 - 5⟹12k−8k=8−5

\sf \implies 4k = 3⟹4k=3

\sf \implies k = \dfrac{3}{4}⟹k=

4

3

Ratio = 3 : 4.

Answered by HuYaarKoiTo
8

Explanation:

EXPLANATION.

Ratio in which the line 2y - 3x = 8 divides the line segment joining the points (1, 4) and (-2,3).

As we know that,

Section formula for internal division.

\sf \implies \dfrac{mx_{2} + nx_{1}}{m + n} \ , \ \dfrac{my_{2} + ny_{1}}{m + n}⟹

m+n

mx

2

+nx

1

,

m+n

my

2

+ny

1

Using this formula in the equation, we get.

Let the line 2y - 3x = 8 divides the line segment in the ratio = k : 1.

⇒ x₁ = 1 and y₁ = 4.

⇒ x₂ = - 2 and y₂ = 3.

⇒ m = k and n = 1.

Put the values in the equation, we get.

\sf \implies \dfrac{k(-2) + 1(1)}{k + 1} \ , \ \dfrac{k(3) + 1(4)}{k + 1}⟹

k+1

k(−2)+1(1)

,

k+1

k(3)+1(4)

\sf \implies \dfrac{-2k + 1}{k + 1} \ , \ \dfrac{3k + 4}{k + 1}⟹

k+1

−2k+1

,

k+1

3k+4

Equation of line : 2y - 3x = 8.

Put the values of x and y in the equation of line, we get.

\sf \implies 2 \bigg[ \dfrac{3k + 4}{k + 1} \bigg] - 3 \bigg[ \dfrac{-2k + 1}{k + 1} \bigg] = 8⟹2[

k+1

3k+4

]−3[

k+1

−2k+1

]=8

\sf \implies \bigg[ \dfrac{6k + 8}{k + 1} \bigg] - \bigg[ \dfrac{- 6k + 3}{k + 1} \bigg] = 8⟹[

k+1

6k+8

]−[

k+1

−6k+3

]=8

\sf \implies (6k + 8) - (-6k + 3) = 8(k + 1)⟹(6k+8)−(−6k+3)=8(k+1)

\sf \implies 6k + 8 + 6k - 3 = 8k + 8⟹6k+8+6k−3=8k+8

\sf \implies 12k + 5 = 8k + 8⟹12k+5=8k+8

\sf \implies 12k - 8k = 8 - 5⟹12k−8k=8−5

\sf \implies 4k = 3⟹4k=3

\sf \implies k = \dfrac{3}{4}⟹k=

4

3

Ratio = 3 : 4.

Similar questions