Business Studies, asked by as9528269, 12 hours ago

CRM is a process of acquiring retaining and partnering with selective customers. why there is need to establish CRM process​

Answers

Answered by saravandatta
0

Answer:

CRM is an enterprise application module that manages a company's interactions with current and future customers by organizing and coordinating, sales and marketing, and providing better customer services along with technical support.

Atul Parvatiyar and Jagdish N. Sheth provide an excellent definition for customer relationship management in their work titled - 'Customer Relationship Management: Emerging Practice, Process, and Discipline.

Answered by itzSingle01
0

Let x be any positive integer and y = 3.

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = m

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)x2 = (3q + 1)2 = (3q)2+12+2×3q×1 = 9q2 + 1 +6q = 3(3q2+2q) +1

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)x2 = (3q + 1)2 = (3q)2+12+2×3q×1 = 9q2 + 1 +6q = 3(3q2+2q) +1Substitute, 3q2+2q = m, to get,

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)x2 = (3q + 1)2 = (3q)2+12+2×3q×1 = 9q2 + 1 +6q = 3(3q2+2q) +1Substitute, 3q2+2q = m, to get,x2= 3m + 1 ……………. (2)

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)x2 = (3q + 1)2 = (3q)2+12+2×3q×1 = 9q2 + 1 +6q = 3(3q2+2q) +1Substitute, 3q2+2q = m, to get,x2= 3m + 1 ……………. (2)x2= (3q + 2)2 = (3q)2+22+2×3q×2 = 9q2 + 4 + 12q = 3 (3q2 + 4q + 1)+1

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)x2 = (3q + 1)2 = (3q)2+12+2×3q×1 = 9q2 + 1 +6q = 3(3q2+2q) +1Substitute, 3q2+2q = m, to get,x2= 3m + 1 ……………. (2)x2= (3q + 2)2 = (3q)2+22+2×3q×2 = 9q2 + 4 + 12q = 3 (3q2 + 4q + 1)+1Again, substitute, 3q2+4q+1 = m, to get,

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)x2 = (3q + 1)2 = (3q)2+12+2×3q×1 = 9q2 + 1 +6q = 3(3q2+2q) +1Substitute, 3q2+2q = m, to get,x2= 3m + 1 ……………. (2)x2= (3q + 2)2 = (3q)2+22+2×3q×2 = 9q2 + 4 + 12q = 3 (3q2 + 4q + 1)+1Again, substitute, 3q2+4q+1 = m, to get,x2= 3m + 1………… (3)

Let x be any positive integer and y = 3.By Euclid’s division algorithm, then,x = 3q + r for some integer q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.Therefore, x = 3q, 3q+1 and 3q+2Now as per the question given, by squaring both the sides, we get,x2 = (3q)2 = 9q2 = 3 × 3q2Let 3q2 = mTherefore, x2= 3m ………..(1)x2 = (3q + 1)2 = (3q)2+12+2×3q×1 = 9q2 + 1 +6q = 3(3q2+2q) +1Substitute, 3q2+2q = m, to get,x2= 3m + 1 ……………. (2)x2= (3q + 2)2 = (3q)2+22+2×3q×2 = 9q2 + 4 + 12q = 3 (3q2 + 4q + 1)+1Again, substitute, 3q2+4q+1 = m, to get,x2= 3m + 1………… (3)Hence, from equation 1, 2 and 3, we can say that, the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

Similar questions