Math, asked by amanrastogi5791, 2 months ago

Cross multiplication 2x+y=35 3x+4y=65

Answers

Answered by LivetoLearn143
4

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:2x + y = 35

and

\rm :\longmapsto\:3x + 4y = 65

Now, by using Cross Multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  1 & \sf  35 & \sf 2 & \sf  1\\ \\ \sf 4 & \sf 65 & \sf 3 & \sf 4\\ \end{array}} \\ \end{gathered}

Now,

\rm :\longmapsto\:\dfrac{x}{65 - 140}  = \dfrac{y}{105 - 130}  = \dfrac{ - 1}{8 - 3}

\rm :\longmapsto\:\dfrac{x}{ - 75}  = \dfrac{y}{ - 25}  = \dfrac{ - 1}{5}

\rm :\longmapsto\:\dfrac{x}{ - 75}  = \dfrac{y}{ - 25}  = \dfrac{1}{ - 5}

On multiply each term by - 5,

\rm :\longmapsto\:\dfrac{x}{15}  = \dfrac{y}{5}  =1

\bf\implies \:x = 15

and

\bf\implies \:y = 5

Check the solution :-

Let us consider equation (1),

\rm :\longmapsto\:2x + y = 35

On substitute the values of x = 15 and y = 5,

\rm :\longmapsto\:2 \times 15 + 5 = 35

\rm :\longmapsto\:30 + 5 = 35

\rm :\longmapsto\:35= 35

Hence, verified

Similar questions