cross multiply x-3y-7=0 3x-3y-15=0
Answers
Answer:
x = 4 and y = 1
Step-by-step explanation:
Given : x-3y-7=0 \\3x-3y-15=0
To Find : solve it by cross multiplication method
Solution:
Cross multiplication method
Equations : a_1x+b_1x+c_1=0\\a_2x+b_2x+c_2=0
\frac{x}{b_1c_2-c_1b_2}=\frac{y}{a_1c_2-a_2c_1} =\frac{1}{a_1b_2-a_2b_1}
Comparing the given equations
x-3y-7=0 \\3x-3y-15=0
\frac{x}{(-3)(-15)-(-7)(-3)}=\frac{y}{(1)(-15)-(3)(-7)} =\frac{1}{(1)(-3)-(3)(-3)}
\frac{x}{24}=\frac{y}{6} =\frac{1}{6}
\frac{x}{4}=\frac{y}{1} =\frac{1}{1}
So, x = 4 and y = 1
Step-by-step explanation:
x-3y-7=0 ................................ (i)
3x-3y-15=0 ............................. (ii)
x - 3y = 7.......................... (iii) [ From (i) ]
3x - 3y = 15. [ From (ii) ]
or, x - y = 5.......................... (iv)
now,
get by Subtraction (iii) and (iv)
x - 3y = 7
x - y = 5
- 2y = 2
=> y = (-1) .............................. (v)
now, x-y = 5
or, x - (-1) = 5
or, x+ 1 = 5
or, x = 4.
now,
The Diagnostic solution is —
x = 4
y = -1
please mark me brainlist