Physics, asked by selfieholic, 6 months ago

Crystal diffraction experiments can be performed using X-rays, or electrons accelerated through appropriate voltage. Which probe has greater energy? (For quantitative comparison, take the wavelength of the probe equal to 1 Å, which is of the order of inter-atomic spacing in the lattice) (mₑ=9.1 1 X 10⁻³¹ kg). ​

Answers

Answered by Anonymous
9

Solution:-

⠀⠀⠀⠀⠀⠀

•For x-photon of wavelength of 1Å:

 \bullet \sf \lambda = 1 Å=10 ^{ - 10} m

We know that ,

 \sf E= \dfrac{hc}{ \lambda}

  \sf \:  \:  \:  \:  =  \dfrac{6.62 \times 10 ^{ - 34} \times 3 \times 10^{8}  }{10^{ - 10} }

 \sf \:  \:  \:  \:  = 1.986 \times 10^{ - 15} j

 \sf \:  \:  \:  \:  =  \dfrac{1.986 \times  {10}^{ - 15} }{1.6 \times  {10}^{ - 19} }

 \:  \:  \:  \:  \sf = 12.4 \times 10^{3} eV

 \:  \:  \:  \:  \sf = 12.4Kev

⠀⠀⠀⠀⠀⠀

•For the electron of wavelength 1Å:

 \sf  \bullet\lambda = 1Å=10^{-10}m

⠀⠀⠀⠀⠀⠀

Now, we know that,

 \sf \lambda =  \dfrac{h}{mv}

 \sf \: or \: mv =  \dfrac{h}{ \lambda}

 \:  \:  \:  \:  \sf =  \dfrac{6.62  \times {10}^{ - 34} }{ {10}^{ - 10} }

 \:  \:  \:  \:  \sf = 6.62 \times 10^{ - 24} kg \: ms ^{ - 1}

⠀⠀⠀⠀⠀⠀

Energy of the electron:

 \sf E= \dfrac{1}{2} m {v}^{2}

 \:  \:  \:  \:  \sf =  \dfrac{ \:  \: (mv) ^{2} \:  \:  }{ \:  \: 2m \:  \:  \: }

 \:  \:  \:  \:  \sf =  \dfrac{ \: (6.62 \times  {10}^{ - 24} )^{2} \:  \:  \:  }{2 \times 9.11  \times 10^{ - 31 \:  \: } }

 \:  \:  \:  \:  \sf = 2.405 \times  {10}^{ - 17} j

 \: \:  \:  \:  \sf =  \dfrac{2.405 \times  {10}^{ - 17} }{1.6 \times 10^{ - 19} }

 \:  \:  \:  \:   \bf= 150.3eV

⠀⠀⠀⠀⠀⠀

It follows that x-ray photon has greater energy

Answered by Anonymous
4

Kindly Refer to Attachment !!!

Attachments:
Similar questions