Math, asked by mugeshmrk768, 9 months ago

csa and tsa of the solid right circular cylinder are 704 cm and 1936 cm find radius and height ​

Answers

Answered by msachaltiwari
1

Answer:

r = 14 cm

h = 8 cm

Step-by-step explanation:

Given :-

CSA= 704 cm

TSA = 1936 cm

Let the radius be r and height be h

CSA = 704 cm

2 π rh = 704 -------------------------( equation 1)

Now we know that:-

TSA of Cylinder = 2 π rh + 2πr^2

1936 = 704 + 2πr^2 -----------------( From Equation 1)

1936 - 704 = 2π r^2

1232 = 2π r^2

r^2 = 1232/2π

On further solving

r^2 = 4312/22

r^2 = 196

r = √196

r = 14 cm

Now in Equation 1

2 π rh = 704

2 x 22/7 x 14 x h = 704

88 h = 704

h = 704/88

h = 8 cm

Answered by Priyanshulohani
0

\large\underline\pink{Given:-}

Cylinder of Height = 4 cm

Cylinder of Radius = 3.5 cm

\large\underline\pink{To find:-}

Fine the ratio of the TSA and CSA of a cylinder ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \:  \therefore \: \: Total \: \: surface \: \: area \: \: cylinder \: \: = \: \: {2} \: \pi \: r \: {({r} \: + \: {h})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: {({3.5} \: + \: {4})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: \times \: {7.5}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: {22} \: \times \: {0.5} \: \times \: {7.5}

\: \: \: \: \: \leadsto \: \: {44} \: \times \: {3.75}

\: \: \: \: \: \leadsto \: \: {165} \: {cm}^{2}

\: \: \: \: \:  \therefore \: \: Curved \: \: surface \: \: area \: \: of Cylinder \: \: = \: \: {2} \: \pi \: r \: h

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {3.5} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: {22} \: \times \: {0.5} \: \times \: {4}

\: \: \: \: \:  \leadsto \: \: {44} \:  \times \: {2}

\: \: \: \: \:  \leadsto \: \: {88} \: {cm}^{2}

\: \: \: \: \:  Ratio \: \: = \: \: \frac{TSA \: \: of \: \: Cylinder}{CSA \: \: of \: \: Cylinder}

\: \: \: \: \:  \leadsto \: \: \frac{165}{88}

\: \: \: \: \: \: \: Hence, \\ \: \:\therefore \: \: The \: \: ratio \: \: of \: \: the \: \: TSA \: \: and \: \: CSA \: \: of \: \: a \: \: cylinder \: \: {165} \: : \: {88}

Similar questions