Cube root of 1728 by succesive a subtraction method
Answers
Answered by
0
Answer:
3 v1728=(3^3x2^3v2^3) I/3 = 3x2x2=12
Answered by
2
Answer:
12
Step-by-step explanation:
Substituting n = 1, we get:
⇒ 1 + 1 ( 1 - 1 ) / 2 × 6
⇒ 1 + 0 × 6 = 1
At n = 2,
⇒ 1 + [ ( 2 ( 2 - 1 ) / 2 ] × 6
⇒ 1 + [ 2 / 2 ] × 6 = 1 + 6 = 7
At n = 3,
⇒ 1 + [ 3 ( 3 - 1 ) / 2 ] × 6
⇒ 1 + [ 3 ( 2 ) / 2 ] × 6
⇒ 1 + 18 = 19
Similarly the series continues as: 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, etc..
Starting Subtraction we get,
⇒ 1728 - 1 = 1727
⇒ 1727 - 7 = 1720
⇒ 1720 - 19 = 1701
⇒ 1701 - 37 = 1664
⇒ 1664 - 61 = 1603
⇒ 1603 - 91 = 1512
⇒ 1512 - 127 = 1385
⇒ 1385 - 169 = 1216
⇒ 1216 - 217 = 999
⇒ 999 - 271 = 728
⇒ 728 - 331 = 397
⇒ 397 - 397 = 0
Therefore after 12 steps we get 0.
Hence the cube root of 1728 is 12.
Similar questions