Cube root of 1728 by successful subtraction method
Answers
Answered by
6
successive subtraction method we subtract numbers that we obtain from ( 1 + n ( n - 1 )
×
3 )
As : At n = 1 We get 1 + 1( 1 - 1 )
×
3 = 1 + 0 = 1
At n = 2 we get 1 + 2 ( 2 - 1 )
×
3 = 1 + 2
×
1
×
3 = 1 + 6 = 7
At n= 3 we get 1 + 3 ( 3 - 1 )
×
3 = 1 + 3
×
2
×
3 = 1 + 18 = 19
So, we get : 1 , 7 , 19 , 37 , 61 , 91 , 127 , 169 , 217 , 271 , 331 , 397 , . . .
So,
1 ) 1728 - 1 = 1727
2 ) 1727 - 7 = 1720
3 ) 1720 - 19 = 1701
4 ) 1701 - 37 = 1664
5 ) 1664 - 61 = 1603
6 ) 1603 - 91 = 1512
7 ) 1512 - 127 = 1385
8 ) 1385 - 169 = 1216
9 ) 1216- 217 = 999
10 ) 999 - 271 = 728
11 ) 728 - 331 = 397
12 ) 397 - 397 = 0
Here we can see that in 12 subtraction we get " 0 " , So
1728= 12 ( Ans )
×
3 )
As : At n = 1 We get 1 + 1( 1 - 1 )
×
3 = 1 + 0 = 1
At n = 2 we get 1 + 2 ( 2 - 1 )
×
3 = 1 + 2
×
1
×
3 = 1 + 6 = 7
At n= 3 we get 1 + 3 ( 3 - 1 )
×
3 = 1 + 3
×
2
×
3 = 1 + 18 = 19
So, we get : 1 , 7 , 19 , 37 , 61 , 91 , 127 , 169 , 217 , 271 , 331 , 397 , . . .
So,
1 ) 1728 - 1 = 1727
2 ) 1727 - 7 = 1720
3 ) 1720 - 19 = 1701
4 ) 1701 - 37 = 1664
5 ) 1664 - 61 = 1603
6 ) 1603 - 91 = 1512
7 ) 1512 - 127 = 1385
8 ) 1385 - 169 = 1216
9 ) 1216- 217 = 999
10 ) 999 - 271 = 728
11 ) 728 - 331 = 397
12 ) 397 - 397 = 0
Here we can see that in 12 subtraction we get " 0 " , So
1728= 12 ( Ans )
Similar questions