Math, asked by parasrawal117, 1 month ago

cube roots of unity 2 If w & we are О Prove that (2-w+2 w²) (2+2w - w^2) = 9​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:1, \: \omega , \:  {\omega }^{2}  \: are \: cube \: roots \: of \: unity

\large\underline{\sf{To\:prove- }}

\rm :\longmapsto\:(2 - \omega  + 2 {\omega }^{2})(2 + 2\omega  -  {\omega }^{2}) = 9

\large\underline{\sf{Solution-}}

We know,

\rm :\longmapsto\:1, \: \omega , \:  {\omega }^{2}  \: are \: cube \: roots \: of \: unity

then

\rm :\longmapsto\:1 + \omega  +  {\omega }^{2}  = 0

and

\rm :\longmapsto\: {\omega }^{3} = 1

Now, Consider,

\rm :\longmapsto\:2 - \omega  +  {2\omega }^{2}

\rm \:  =  \: 2 +  {2\omega }^{2} - \omega

\rm \:  =  \: 2(1 +  {\omega }^{2}) - \omega

\rm \:  =  \: 2( -\omega  ) - \omega

\rm \:  =  \:  - 2\omega  - \omega

\rm \:  =  \:  - 3\omega

Hence,

\rm :\implies\:\purple{ \boxed{ \bf{2 - \omega  + 2 {\omega }^{2}  =  - 3\omega }}}

Now, Consider

\rm :\longmapsto\:2 + 2\omega  -  {\omega }^{2}

\rm \:  =  \: 2(1 + \omega ) -  {\omega }^{2}

\rm \:  =  \: 2( { - \omega }^{2}) -  {\omega }^{2}

\rm \:  =  \:  { - 2\omega }^{2} -  {\omega }^{2}

\rm \:  =  \:  { - 3\omega }^{2}

Hence,

\rm :\implies\:\purple{ \boxed{ \bf{ \:  \: 2 + 2\omega  -  {\omega }^{2} =  -  {3\omega }^{2} }}}

Now, Consider

\rm :\longmapsto\:(2 - \omega  + 2 {\omega }^{2})(2 + 2\omega  -  {\omega }^{2})

On substituting the values evaluated above, we have

\rm \:  =  \: ( - 3\omega )( -  {3\omega }^{2} )

\rm \:  =  \:  {9\omega }^{3}

\rm \:  =  \: 9

Hence,

\bf\implies \:\purple{ \boxed{ \bf{(2 - \omega  + 2 {\omega }^{2})(2 + 2\omega  -  {\omega }^{2}) = 9}}}

Additional Information :-

Let derive cube roots of unity!!!

\rm :\longmapsto\:x =  {\bigg(1 \bigg) }^{\dfrac{1}{3} }

\rm :\implies\: {x}^{3} = 1

\rm :\longmapsto\: {x}^{3} - 1 = 0

\rm :\longmapsto\:(x - 1)( {x}^{2} + x + 1) = 0

\bf\implies \:x = 1

or

\rm :\longmapsto\: {x}^{2} + x + 1 = 0

Its a quadratic equation in x, so using Quadratic Formula we get

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2} - 4 \times 1 \times 1 } }{2 \times 1}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \: i \sqrt{3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}  \:  \: or \:  \: \dfrac{ - 1 \:    -   \: i \sqrt{3} }{2}

Hence,

Cube roots of unity are

\rm :\longmapsto\:x = 1 \:  \: or \:  \: \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}  \:  \: or \:  \: \dfrac{ - 1 \:    -   \: i \sqrt{3} }{2}

represented as

\rm :\longmapsto\:1, \: \omega , \:  {\omega }^{2}  \: are \: cube \: roots \: of \: unity

Similar questions