Physics, asked by srinadh4775, 9 months ago

Current I1, I2, I3 meet at a junction(node) in a circuit. All currents are marked as entering the node. If I1= -6sin(wt) mA and I2= 8cos(wt)mA, then I3 will be? ​

Answers

Answered by nirman95
0

Given:

Current I1, I2, I3 meet at a junction(node) in a circuit. All currents are marked as entering the node. I1= -6sin(wt) mA and I2= 8cos(wt)mA

To find:

Variation of I3 ;

Calculation:

As per Kirchoff's Current Junction Law :

 \therefore \:  \rm{I1 + I2 + I3 = 0}

 =  >  \:  \rm{ - 6 \sin( \omega t) + 8 \cos( \omega t)  + I3 = 0}

 =  >  \:I3 =   \rm{ 6 \sin( \omega t)  -  8 \cos( \omega t)  }

  \rm{=  >  \:I3 =  (\sqrt{ {6}^{2}  +  {8}^{2} }  ) \bigg \{   \frac{6}{ \sqrt{ {6}^{2}  +  {8}^{2} } }  \sin( \omega t)  -   \frac{8}{ \sqrt{ {6}^{2}  +  {8}^{2} } }  \cos( \omega t)  } \bigg \}

  \rm{=  >  \:I3 =  (\sqrt{ 100 }  ) \bigg \{   \frac{6}{ \sqrt{100 } }  \sin( \omega t)  -   \frac{8}{ \sqrt{100 } }  \cos( \omega t)  } \bigg \}

  \rm{=  >  \:I3 =  (10  ) \bigg \{   \frac{6}{ 10}  \sin( \omega t)  -   \frac{8}{10} \cos( \omega t)  } \bigg \}

Let 6/10 be \cos(\theta)

  \rm{=  >  \:I3 =  (10  ) \bigg \{    \cos( \theta)  \sin( \omega t)  -    \sin( \theta)  \cos( \omega t)  } \bigg \}

  \rm{=  >  \:I3 =  (10  ) \bigg \{  \sin( \omega t -  \theta) } \bigg \}

So, final answer is:

 \boxed{ \red{  \bold{=  >  \:I3 =  (10  ) \bigg \{  \sin( \omega t -  \theta) } \bigg \}}}

Similar questions