Math, asked by abagotia90, 17 days ago

Curved surface area and volume of a cylinder are in the ratio 2:7, find the radius of the cylinder? please army ​

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Let assume that

  • Radius of cylinder be r units

  • Height of cylinder be h units

Given that,

\rm \: CSA_{(Cylinder)} : Volume_{(Cylinder)} \:  =  \: 2 : 7 \\

\rm \: 2\pi \: rh : \pi \:  {r}^{2} h \:  =  \: 2 : 7 \\

\rm \: \dfrac{2\pi \: rh}{\pi \:  {r}^{2} h}  = \dfrac{2}{7}  \\

\rm \: \dfrac{2}{r}  = \dfrac{2}{7}  \\

\bf\implies \:r \:  =  \: 7 \: units \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by AnanyaBaalveer
4

Question:-

  • Curved surface area and volume of a cylinder are in the ratio 2:7, find the radius of the cylinder?

To find:-)

  • Radius of the cylinder.

Given:-)

  • Curved surface area and volume of cylinder in ratio 2:7.

Formula used:-)

 \small\boxed {\bf{ \frac{ \red{Curved \:  Surface  \: Area_{cylinder}} }{ \green{Volume _{cylinder}} } }}

Solution:-

Given that:-

\small\underline{\sf{Curved  \: Surface \: Area:Volume=2:7}}

\large\underline{\sf{2\pi rh \ratio \pi {r}^{2}h = 2 \ratio 7 }}

\large\boxed{\sf{ \implies  \frac{2\pi rh}{\pi {r}^{2}h }  =  \frac{2}{7} }}

On cross multiplying we get:-

\large\boxed{\sf{ \implies 7 \times 2\pi rh = 2\pi {r}^{2} h}}

On cross multiplying we get:-

\large\boxed{\sf{ \implies  \frac{7 \times 2\pi rh}{2\pi {r}^{2} h} }}

\large\boxed{\sf{ \implies  \frac{7}{r} }}

On bringing r to RHS we get:-

\large\boxed{\bf{ \implies 7 = r}}

Hence, the radius of cylinder is 7.

Similar questions