Math, asked by rikumoniborah06, 3 months ago

Curved surface area of a cone is 308 cm and its slant height is 14 cm. Find
(i) radius of the base and (ii) total surface area of the cone.​

Answers

Answered by shreekrishna35pdv8u8
18

Answer:

L=14

CSA of cone = 308

\pi \times r \times l = 308 \\  \frac{22}{7}  \times r \times 14 = 308 \\ r =  \frac{308}{14}  \times  \frac{7}{22}  \\  = 7 \\

tsa \: of \: cone = \pi \times r(r + l) \\  =  \frac{22}{7}  \times 7(7 + 14) \\  = 22 \times 21 \\  = 462

Answered by Anonymous
42

Answer:

Answer :

  • ➠ (i) The radius of the base of cone is 7 cm.
  • ➠ (ii) Total surface area of cone is 462 cm².

\begin{gathered}\end{gathered}

Given :

  • ➠ (i) Curved surface area of a cone is 308 cm.
  • ➠ (ii) Slant height of cone is 14 cm.

\begin{gathered}\end{gathered}

To Find :

  • ➠ (i) radius of the base and
  • ➠ (ii) total surface area of the cone.

\begin{gathered}\end{gathered}

Using Formulas :

\small{\underline{\boxed{\sf{CSA  \: of \:  cone =  \pi rl}}}}

\small{\underline{\boxed{\sf{TSA  \: of  \: cone = \pi r (r + l )}}}}

Where :-

  • CSA = Curved surface area
  • TSA = Total surface area
  • π = 22/7
  • r = radius
  • h = height

\begin{gathered}\end{gathered}

Solution :

Finding the radius of cone by substituting the values in the formula :-

\dashrightarrow{\sf{CSA  \: of \:  cone =  \pi rl}}

\dashrightarrow{\sf{308=   \dfrac{22}{7}   \times r \times 14}}

\dashrightarrow{\sf{308=   \dfrac{22}{\cancel{7}}   \times r \times  \cancel{14}}}

\dashrightarrow{\sf{308=  22  \times r \times 2}}

\dashrightarrow{\sf{308=  44 \times r}}

\dashrightarrow{\sf{308=  44r}}

\dashrightarrow{\sf{r =  \dfrac{308}{44}}}

\dashrightarrow{\sf{r =  \cancel{\dfrac{308}{44}}}}

\dashrightarrow{\sf{r = 7 \: cm}}

\bigstar \: \underline{\boxed{\sf{\purple{ Radius= 7 \: cm}}}}

∴ The radius of cone is 7 cm.

 \rule{300}{1.5}

Now, finding TSA of cone by substituting the values in the formula :-

\dashrightarrow{\sf{TSA  \: of  \: cone = \pi r (r + l )}}

\dashrightarrow{\sf{TSA  \: of  \: cone =  \dfrac{22}{7} \times 7(7 + 14)}}

\dashrightarrow{\sf{TSA  \: of  \: cone =  \dfrac{22}{\cancel{7}} \times \cancel{7}(21)}}

\dashrightarrow{\sf{TSA  \: of  \: cone = 22 (21)}}

\dashrightarrow{\sf{TSA  \: of  \: cone = 22  \times 21}}

\dashrightarrow{\sf{TSA  \: of  \: cone = 462 \:  {cm}^{2} }}

\bigstar \: \underline{\boxed{\sf{\purple{TSA  \: of  \: cone = 462 \:  {cm}^{2}}}}}

∴ The total surface area of cone is 462 cm².

\begin{gathered}\end{gathered}

Learn More :

\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA=\pi r^2+\pi rl\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\\ \\{\textcircled{\footnotesize\textsf{5}}} \: \:Slant \: Height=\sqrt{r^2 + h^2}\end{minipage}}

\underline{\rule{220pt}{2.5pt}}

Attachments:
Similar questions