Math, asked by Anonymous, 1 month ago

Curved surface area of a right circular cylinder is 4.4 sq.m. If the radius of the base of the cylinder is 0.7 m, find its height.

Answers

Answered by Anonymous
15

Answer:

Given :-

  • The curved surface area of a right circular cylinder is 4.4 m².
  • The radius of the base of the cylinder is 0.7 m.

To Find :-

  • What is the height of a right circular cylinder.

Formula Used :-

\clubsuit Curved Surface Area or CSA of Right Circular Cylinder Formula :

\mapsto \sf\boxed{\bold{\pink{C.S.A_{(Cylinder)} =\: 2{\pi}rh}}}

where,

  • C.S.A = Curved Surface Area
  • π = pie or 22/7
  • r = Radius
  • h = Height

Solution :-

Given :

  • Curved Surface Area = 4.4
  • Radius = 0.7 m
  • pie (π) = 22/7

According to the question by using the formula we get,

\bigstar\: \: \sf\bold{\purple{2{\pi}rh =\: 4.4}}\: \: \bigstar

\implies \sf 2 \times \dfrac{22}{7} \times 0.7 \times h =\: 4.4

\implies \sf \dfrac{44}{7} \times 0.7h =\: 4.4

\implies \sf h =\: \dfrac{4.4 \times 7}{44 \times 0.7}

\implies \sf h =\: \dfrac{\cancel{30.8}}{\cancel{30.8}}

\implies \sf h =\: \dfrac{1}{1}

\implies \sf\bold{\red{h =\: 1\: m}}

{\small{\bold{\underline{\therefore\: The\: height\: of\: a\: right\: circular\: cylinder\: is\: 1\: m\: .}}}}

Answered by TrustedAnswerer19
12

 \pink{ \boxed{\boxed{\begin{array}{cc}  \leadsto \bf given \\  \\  \rm \to \:Curved  \: surface  \: area \:  of \:  cylinder , \\   \rm \: = C.S.A = 4.4  \:  {m}^{2} \\  \\  \rm \to \: Radius \:  of \:  the \:  base \:  of \:  the  \: cylinder , \\  \rm \: r = 0.7  \: m  \\  \\ \underline{ \sf \: we \: have \: to \: find \:  : } \\  \\  \rm \to \:  height  \: of  \: the  \: circular  \: cylinder  \: =  h\end{array}}}}

We know that,

\blue{ \boxed{\boxed{\begin{array}{cc}  \sf  \: \to \:Curved  \: surface \:  area \:  of \:  cylinder,  \\  \\  \sf \:  C.S.A = 2\pi \: r \: h \end{array}}}}

According to the question,

{ \boxed{\boxed{\begin{array}{cc}  \rm \: 2\pi \: r \: h =4.4  \\  \\  \rm  \implies\:2 \times  \frac{22}{7} \times 0.7 \times   h =  {4.4}{}  \\  \\  \rm  \implies\:h =  \frac{4.4 \times 7}{2 \times 22 \times 0.7}  \\ \\   \rm  \implies\:h = 1 \: m\end{array}}}}

So,

Height of the circular cylinder h = 1 m

Similar questions