Math, asked by Mister360, 3 months ago

Customers are asked to stand in the lines. If one customer is extra in a line, then there would be two less lines. If one customer is less in line, there would be three more lines. Find the number of students in the class.

Answers

Answered by ItzBrainlyBeast
23

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{⇝ QuEsTiOn :-}}

\large\textsf{                                                               }

Students are asked to stand in the lines. If one student is extra in a line, then there would be two less lines. If one student is less in line, there would be three more lines. Find the number of students in the class.

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{✯\; AnSwEr :-}}

\large\textsf{                                                               }

\boxed{\large\textsf\textcolor{orange}{Total number of students = 60 students}}

\large\textsf{                                                               }

\LARGE\textsf{\underline\textcolor{aqua}{✯\; SoLuTiOn :-}}

\large\textsf{                                                               }

  • Let the number of students in a line be ' x '

  • Let the number of line's be ' y '

  • So , the total number of students will be ' xy '

\large\textsf{                                                               }

↭ According to the first condition

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{( x + 1 )( y - 2 ) = xy}

\qquad\tt{:}\longrightarrow\large\textsf{x ( y - 2 ) + 1 ( y - 2 ) = xy}

\qquad\tt{:}\longrightarrow\large\textsf{xy - 2x + y - 2 = xy}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{- 2x + y = 2 \; ------ ( i )}}

\large\textsf{                                                               }

↭ According to the second condition

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{( x - 1 ) ( y + 3 ) = xy}

\qquad\tt{:}\longrightarrow\large\textsf{x ( y + 3 ) - 1 ( y + 3 ) = xy}

\qquad\tt{:}\longrightarrow\large\textsf{xy + 3x - y - 3 = xy}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{3x - y = 3 \; ------ ( ii )}}

\large\textsf{                                                               }

↭ Adding eq. ( i ) and ( ii ) :-

\large\textsf{                                                               }

  \:  \:  \:  \:  \:  \:  \: \:  \: \:  \:  \: \:  \:  \: \:  \:  \:\:  \: \:  \:  \:  \:  \large\textsf{- 2x \:  +  \: y \:  =  \:  2} \\ \large\textsf{( \:  +  \: )}   \:  \:  \:  \: \; \;  \:  \: \: \:  \:  \:  \: \large\textsf{3x \:  -  \: y \:  =  \: 3}  \\  \:  \:  \large\textsf{-----------------------------} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\large\textsf\textcolor{red}{x \:  =  \: 5 }}

\large\textsf{                                                               }

↭ Substituting the value of x in ( i )

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{- 2x + y = 2}

\qquad\tt{:}\longrightarrow\large\textsf{- 2 × 5 + y = 2}

\qquad\tt{:}\longrightarrow\large\textsf{- 10 + y = 2}

\qquad\tt{:}\longrightarrow\large\textsf{y = 2 + 10}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{y = 12}}

\large\textsf{                                                               }

\large\textsf\textcolor{orange}{∴ Total number of students = 5 × 12 = 60}

Similar questions