Math, asked by namandjoshi, 10 hours ago

Customers make purchases at a convenience store, on average, every six minutes. It is fair to assume that the time between customer purchases is exponentially distributed. Jack operates the cash register at this store.

Answers

Answered by anamipandeyvr
0

Answer:

hello good evening dear

Answered by sarahssynergy
0

Given is an exponential distribution with mean six minutes, answer the question based on this.

Explanation:

  • The PDF- probability density function of an exponential distribution using rate parameter λ is given by f(x)=\frac{e^{-\frac{x}{\lambda} }}{\lambda} ,\ \ \ x\geq 0  
  • here mean is \mu=\lambda and variance is \sigma^2=\lambda^2
  • hence, the probability of a random variable 'X' is given by,                                    P(x=X)=\int\limits^X_0 {f(x)} \, dx      
  • For the given distribution we have , \mu=6\ min=\lambda                                           f(x)=\frac{e^{-\frac{x}{6} }}{6} ,\ \ \ x\geq 0          
  • standard deviation is \sigma=\lambda= 6\ min
  • variance is \sigma^2=\lambda^2=36.          
  • the probability that a customer will arrive in less than five minutes is,                                                                                                                          P(x< 5)=\int\limits^5_0 {\frac{e^{-\frac{x}{6} }}{6}} \, dx \\P(x<5)= 1-e^{\frac{-5}{6} } \\P(x<5)=0.5654(approx.)  
  • the probability that no one shows up for over half hour is,                               P(x>30)=1-P(x\leq30 )\\P(x>30)=1-\int\limits^{30}_0 {\frac{e^{\frac{-x}{6}} }{6} } \, dx \\P(x>30)=1-(1-e^{\frac{-30}{6} })\\P(x>30)=e^{-5}\\P(x>30)=0.0067(approx.)      

Similar questions