Physics, asked by twinklerohilla19, 11 months ago

cyclist moves in a circular track of radius 100 m. If the coefficient
of friction is 0.2 then the maximum speed with which the cyclist
can take a turn without leaning inwards is
[1]​

Answers

Answered by Anonymous
13

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf Speed (v)=14\:m/s }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Radius of cicular track (R) = 100m

  • Coefficient of friction \sf{(\mu)}=0.2

\large\underline\pink{\sf To\:Find: }

  • Maximum speed with which Cyclist turn without leaning inward (v)=?

━━━━━━━━━━━━━━━━━━━━━━━━━━

We know that ,

\large{\boxed{\sf v=\mu Rg }}

On putting value :-

\large\implies{\sf v=\sqrt{0.2×100×10}}

\large\implies{\sf v=10\sqrt{2}}

Value of \sf{\sqrt{2}=1.4}

\large\implies{\sf v=10×1.4 }

\large\implies{\sf v=14\:m/s }

\large\red{\boxed{\sf Speed (v)=14\:m/s }}

Hence ,

Maximum speed with which the cyclist can turn without leaning inwards is

14m/s

Answered by Shreya091
146

\huge{\mathfrak{\underline{\orange{Answer:-}}}}

\large\pink{\boxed{\tt Velocity=14m/s}}

\large\bf{\bold{\underline{\underline{Given:-}}}}

\star\sf\ <strong>Radius</strong> \:of \:track(R)=100m \\ \\ \star\sf\ Coefficient of friction (μ)=0.2

\large\bf{\bold{\underline{\underline{To\: find:-}}}}

\star\sf\ Maximum speed(v)=?

\large\bf{\bold{\underline{\underline{Solution:-}}}}

Formula used ;

\large\red{\boxed{\bf v= μRg}}

Now; let us constitute given values

\large\sf\implies\ v=  \sqrt {0.2 \times\ 100 \times\ 10}

\large\sf\implies\ v=10\sqrt 2

\large\red{\boxed{\sf\sqrt 2 = 1.4 }}

\large\sf\implies\ v = 10 \times\ 1.4

\large\sf\implies\ 14m/s

Similar questions