cycloheptane an longer ring are free of angle strain yet they can be synthesize easily why ?
Answers
Cycloalkanes are very important in components of food, pharmaceutical drugs, and much more. However, to use cycloalkanes in such applications, we must know the effects, functions, properties, and structures of cycloalkanes. Cycloalkanes are alkanes that are in the form of a ring; hence, the prefix cyclo-. Stable cycloalkanes cannot be formed with carbon chains of just any length. Recall that in alkanes, carbon adopts the sp3 tetrahedral geometry in which the angles between bonds are 109.5°. For some cycloalkanes to form, the angle between bonds must deviate from this ideal angle, an effect known as angle strain. Additionally, some hydrogen atoms may come into closer proximity with each other than is desirable (become eclipsed), an effect called torsional strain. These destabilizing effects, angle strain and torsional strain are known together as ring strain. The smaller cycloalkanes, cyclopropane and cyclobutane, have particularly high ring strains because their bond angles deviate substantially from 109.5° and their hydrogens eclipse each other. Cyclopentane is a more stable molecule with a small amount of ring strain, while cyclohexane is able to adopt the perfect geometry of a cycloalkane in which all angles are the ideal 109.5° and no hydrogens are eclipsed; it has no ring strain at all. Cycloalkanes larger than cyclohexane have ring strain and are not commonly encountered in organic chemistry.
Ring Strain and the Structures of Cycloalkanes
There are many forms of cycloalkanes, such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, among others. The process of naming cycloalkanes is the same as naming alkanes but the addition of the prefix cyclo- is required. Cyclobutane is in a form of a square, which is highly unfavorable and unstable (this will be explained soon). There are different drawings for cyclobutane, but they are equivalent to each other. Cyclobutane can reduce the ring string by puckering the square cyclobutane. Cyclopentane takes the shape of a pentagon and cyclohexane is in the shape of a hexagon.