Physics, asked by bulbulaadhi, 5 months ago

Cylindrical copper rod has a resistance of 10 ohm .The rod is reformed to twice it's original length without any change in volume.Find the resistance of the newly formed cylinder.​

Answers

Answered by Anonymous
2

resistance =40 ohm

Explanation:

as we increase length twice by keeping volume constant

i.e)suppose new radius is R so

pie×r×r×h=pie×R×R×2h

r^2=2R^2

so R=r/root(2)

so previous cross section area = 2× new cross section area

now we know that R(resistance)=rho×length/cross section area

now put values we get

new resistance =4×previous resistance

=4×10=40 ohm

Answered by Anonymous
0

The resistance of rod before reformation

R  

1

​  

=R=  

πr  

1

2

​  

 

ρl  

1

​  

 

​  

     [∵R=  

A

ρl

​  

=  

πr  

2

 

ρl

​  

]

Now the rod is reformed such that

l  

2

​  

=  

2

l  

1

​  

 

​  

 

∴πr  

1

2

​  

l  

1

​  

=πr  

2

2

​  

l  

2

​  

 (∵ Volume remains constant)

or  

r  

2

2

​  

 

r  

1

2

​  

 

​  

=  

l  

1

​  

 

l  

2

​  

 

​  

           ..(i)

Now the resistance of the rod after reformation

R  

2

​  

=  

πr  

2

2

​  

 

ρl  

2

​  

 

​  

 ∴  

R  

2

​  

 

R  

1

​  

 

​  

=  

πr  

1

2

​  

 

ρl  

1

​  

 

​  

/  

πr  

2

2

​  

 

ρl  

2

​  

 

​  

=  

l  

2

​  

 

l  

1

​  

 

​  

×  

r  

1

2

​  

 

r  

2

2

​  

 

​  

 

or  

R  

2

​  

 

R  

1

​  

 

​  

=  

l  

2

​  

 

l  

1

​  

 

​  

×  

l  

2

​  

 

l  

1

​  

 

​  

=(  

l  

2

​  

 

l  

1

​  

 

​  

)  

2

=(2)  

2

            (using (i))

∴R  

2

​  

=  

4

R

Similar questions