Math, asked by ajha84182, 1 month ago

D 09 8. Find the zeroes of the quadratic polynomial x2 + 7x + 10 and verify the relationship between the zeroes and the coefficients.​

Answers

Answered by naveen200605
0

 {x}^{2}  + 7x + 10 \\  {x}^{2}  + 5x + 2x + 10 \\ x(x + 5) \:  \:  \:  \: 2(x + 5) \\( x + 2) \:  \:( x + 5) \\( x + 2) = 0 \\ x =  - 2

x + 5 = 0 \\ x =  - 5 \\  \alpha  =  - 2 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \beta  =  - 5 \: \: are \: the \: zeroes \: of \: the  \\ polynomial

 \alpha  =  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \beta  =  - 5 \\  \alpha  +  \beta  =  - 2  +  - 5 =  - 7 \\  \alpha  \beta  =  - 2 \times  - 5 = 10 \\  \\  {x}^{2}  + 7x + 10 \\ \:  \:  \:  \:  \:  \:

a = 1 \:  \:  \:  \:  \:  \:  \:  \: b = 7 \:  \:  \:  \:  \:  \:  \:  \: c = 10 \\  \frac{ - b}{a}  =  \frac{ - coeffient \: of \: x}{coefficient \: of \:  {x}^{2} }  =  \frac{-7}{1} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: =  - 7 \\  \frac{c}{a}  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }=\frac{10}{1}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 10 \\  \alpha  +  \beta  =  \frac{ - b}{a}  =  - 7 \\  \alpha  \beta  =  \frac{c}{a}  = 10 \\ hence \: verified

Similar questions