Math, asked by Jsh13579357, 1 year ago

(D+1)(D+D'-1)z=sin(2x+3y) complete solutions

Answers

Answered by aryakman
3

Answer:

it's a cos sin teta Cora meta alpha beta gama

Step-by-step explanation:

because if we divide d+1 by 2 the the equation becomes a root then it should be divided with sin cos teta alpha

Answered by MasterKaatyaayana2
3

Answer:

Z= e^{-x}\phi(y)+e^{x}\phi(y-x)-\frac{1}{130} \left( 2cos(2x+3y)+11sin(2x+3y)\right)

Step-by-step explanation:

C.F of (D-m_1D'-k_1)(D-m_2D'-k_2).....    =0 is given by

e^{k_1x}(y+m_1x)+e^{k_2x}(y+m_2x)+.........

so the C.F of the given by is given by e^{-x}\phi(y)+e^{x}\phi(y-x) .

P.I is given by,

P.I.=\frac{1}{D^2+DD'+D'-1} sin(2x+3y)\\\\= \frac{1}{-(2)^2+(-2*3)+D'-1)}  sin(2x+3y) =\frac{1}{D'-11} sin(2x+3y)\\\\=\frac{D'+11}{D'^2-121} sin(2x+3y)=\frac{D'+11}{-3^2-121} sin(2x+3y)=\frac{D'+11}{-130} sin(2x+3y)\\=-\frac{1}{130} \left( 2cos(2x+3y)+11sin(2x+3y)\right)

final solution will be

C.F+P.I=e^{-x}\phi(y)+e^{x}\phi(y-x)-\frac{1}{130} \left( 2cos(2x+3y)+11sin(2x+3y)\right)

Similar questions