Math, asked by StarTbia, 1 year ago

D(-2,-3), E(1,0), F(2,1) Determine whether the given points are collinear or not.

Answers

Answered by tiwaavi
10
Answer - Yes. 

Explanation -

Let the Points D(-2,3), E(1,0), N(2,1) be D(x₁, y₁), E(x₂,y₂), F(x₃,y₃).

Let us first find the Slope of DE,

∵ m =  \frac{y_2 - y_1}{x_2 - x_1}
∴ m = (0 + 3)/(1 + 2)    
        = 3/3 
        = 1

Now For th Slope of EF, 

m =  \frac{y_3 - y_2}{x_3 - x_2}    
    = (1 - 0)/(2 - 1)  
    = 1  

Since, the Slope of both the lines DE and EF are same therefore, Points are Collinear.


Hope it helps.
Answered by Robin0071
15
SOLUTION:-
GIVEN BY POINT :-
D(-2 , -3) , E( 1 , 0) , F( 2 , 1)

if DE + EF = DF
then given point is collinear

DE =
 =  \sqrt{ {(1  + 2)}^{2} +  {(0 + 3)}^{2}  }  \\  =  \sqrt{9 + 9}  =  \sqrt{18}  = 3 \sqrt{2}  \\
DF =
 =  \sqrt{ {(2 + 2)}^{2}  +  {( 1+ 3)}^{2} }  \\  =  \sqrt{ 16 + 16 }  =  \sqrt{32}  =  4 \sqrt{2}
EF =
 =  \sqrt{ {(2 - 1)}^{2} +  {(1 - 0)}^{2}  }  \\  =  \sqrt{ {1}^{2}  +  {( 1)}^{2} }  \\  =  \sqrt{1 + 1}   =  \sqrt{2}
now ,
=>DE + EF = DF
=>
3 \sqrt{2}  +  \sqrt{2}  = 4 \sqrt{2}  \\ 4 \sqrt{2}  = 4 \sqrt{2}

●the givens points are collinear●


■I HOPE ITS HELP■



Similar questions