(D^2+4) = sin3x + cos2x
Answers
Answer:
We know that 2sinAcosB = sin(A+B) + sin(A-B)
So, sinAcosB = (1/2){sin(A+B) + sin(A-B)}
=> sin3x cos2x= (1/2){sin 5x + sin x} ………..(1)
Auxiliary Equation is D^2 - 4D +3= 0.
So the roots are 1, 3.
Hence the complementary function
CF is c1 e^x + c2 e^3x……………..(2)
Particular Integral
PI = {1/D^2 - 4D +3} sin3x cos2x
= {1/D^2 - 4D +3}(1/2){sin 5x + sin x} from (1)
= (1/2){1/D^2 - 4D +3} sin 5x
+{1/2){1/D^2 - 4D +3} sin x
= (1/2){1/-1- 4D +3} sin 5x
+(1/2){1/-1- 4D +3} sin x
= (1/2){1/2- 4D} sin 5x
+1/2){1/2- 4D} sin x
= (1/2){(2+4D)/(4–16D^2)} sin 5x
(1/2){(2+4D)/(4–16D^2)} sin x
={(1+2D)/4+400)} sin 5x
+{(1+2D)/4+16)} sin x
= (1/404)(1+2D) sin 5x + (1/20)(1+2D)sin x
= (1/404)(sin 5x+10 cos5x)+(1/20)(sinx+2cos x)
General Solution = CF + PI
Step-by-step explanation: