Math, asked by sippu1322, 1 month ago

(D^2+4D+4)y=5cos????????​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{(D^2+4D+4)y=5\,cosx}

\textbf{To find:}

\textsf{Solution of the given differential equation}

\textbf{Solution:}

\textsf{Characteristic equation is}

\mathsf{p^2+4p+4=0}

\mathsf{(p+2)(p+2)=0}

\mathsf{p=-2,-2}

\mathsf{Complementary\,function\,is}

\mathsf{(Ax+B)e^{-2x}}

\underline{\mathsf{Particular\;integral}}

\mathsf{=\dfrac{5\,cosx}{D^2+4D+4}}

\mathsf{=\dfrac{5\,cosx}{-1+4D+4}}

D^2\,\implies\,-1

\mathsf{=\dfrac{5\,cosx}{4D+3}{\times}\dfrac{4D-3}{4D-3}}

\mathsf{=\dfrac{5\,cosx(4D-3)}{16D^2-9}}

\mathsf{=\dfrac{20\,D(cosx)-15\,cosx}{16(-1)-9}}

D^2\,\implies\,-1

\mathsf{=\dfrac{-20\,sinx-15\,cosx}{-16-9}}

\mathsf{=\dfrac{-20\,sinx-15\,cosx}{-25}}

\mathsf{=\dfrac{-5(4\,sinx+3\,cosx)}{-25}}

\mathsf{=\dfrac{4\,sinx+3\,cosx}{5}}

\therefore\textsf{The general solution is}

\mathsf{y=(Ax+B)e^{-2x}+\dfrac{4\,sinx+3\,cosx}{5}}

\textbf{Find more:}

Find the Particular Integral of y" + 2y' + 3y = Sin x is

https://brainly.in/question/33821291

Similar questions