Math, asked by gayugayu1025, 4 months ago

(d^2+5d-6)y=sin4x sinx​

Answers

Answered by suyashpratap9453
9

Answer:

y = Ae^x + Be^-6x + 1/2[sin 3x - cos 3x/30 + 31cos5x-25sin5x/1586]

Step-by-step explanation:

Answered by brokendreams
5

y = C_1 e^{-6x} + C_2 e^{x} + \frac{1}{2} \Big[ \frac{sin3x - cos3x}{30} + \frac{31cos5x - 25 sin5x}{1586} \Big]

Step-by-step explanation:

Given: The differential equation (D^{2} +  5D - 6) y = sin4x \ sinx

To Find: Solution of the given differential equation

Solution:

  • Finding Complementary Function (C.F.)

For the given differential equation, (D^{2} +  5D - 6) y = sin4x \ sinx, consider,

m^{2} +  5m - 6 = 0

\Rightarrow (m+6) (m-1) = 0

\Rightarrow m = -6, 1

Therefore, \text{C.F.} = C_1 e^{-6x} + C_2 e^{x} \ \cdots \cdots (1)

  • Finding Particular Integral (P.I.)

To find the particular integral, consider the given differential equation such that we have,

\text{P.I.} = \frac{1}{(D^{2} +  5D - 6) }  sin4x \ sinx

\Rightarrow \text{P.I.} = \frac{1}{(D^{2} +  5D - 6) }  \frac{(cos3x - cos5x)}{2}  \because sinAsinB = \frac{cos(A-B) - cos(A+B)}{2}

\Rightarrow \text{P.I.} = \frac{1}{2}  \frac{1}{(D^{2} +  5D - 6) } cos3x - \frac{1}{2}  \frac{1}{(D^{2} +  5D - 6) } cos5x

Now, consider P.I. (1) = \frac{1}{2}  \frac{1}{(D^{2} +  5D - 6) } cos3x

\Rightarrow P.I. (1) = \frac{1}{2}  \frac{1}{(-(3)^{2} +  5D - 6) } cos3x \ \because \frac{1}{f(D^{2} )} cosax = \frac{1}{f(-a^{2} )} cosax

\Rightarrow P.I. (1) = \frac{1}{10}  \frac{1}{(D -3)} cos3x

To get D^{2} at the denominator to apply the rule \frac{1}{f(D^{2} )} cosax = \frac{1}{f(-a^{2} )} cosax, multiply and divide (D + 3) to get,

\Rightarrow P.I. (1) = \frac{1}{10}  \frac{1}{(D -3)}\times \frac{(D + 3)}{(D + 3)}  cos3x

\Rightarrow P.I. (1) = \frac{1}{10}  \frac{(D + 3)}{(D^2 - 3^2)} cos3x = \frac{1}{10}  \frac{(D + 3)}{(-18)} cos3x

\Rightarrow P.I. (1) = \frac{1}{60}  (sin3x - cos3x)

Now, consider P.I. (2) = \frac{1}{2}  \frac{1}{(D^{2} +  5D - 6) } cos5x

\Rightarrow P.I. (2) = \frac{1}{2}  \frac{1}{(-(5)^{2} +  5D - 6) } cos5x \ \because \frac{1}{f(D^{2} )} cosax = \frac{1}{f(-a^{2} )} cosax

\Rightarrow P.I. (2) = \frac{1}{2}  \frac{1}{(5D -31)} cos5x

To get D^{2} at the denominator to apply the rule \frac{1}{f(D^{2} )} cosax = \frac{1}{f(-a^{2} )} cosax, multiply and divide (5D + 31) to get,

\Rightarrow P.I. (2) = \frac{1}{2}  \frac{1}{(5D -31)}\times \frac{(5D + 31)}{(5D + 31)}  cos5x

\Rightarrow P.I. (2) = \frac{1}{2}  \frac{(5D + 31)}{(25D^2 - 31^2)} cos5x = \frac{1}{2}  \frac{(5D + 31)}{(1586)} cos5x

\Rightarrow P.I. (2) = \frac{1}{2} \Big( \frac{25sin5x - 31cos5x}{1586} \Big)

Therefore, P.I. = P.I. (1) + P.I. (2) =  \frac{1}{2} \Big[ \frac{sin3x - cos3x}{30} + \frac{31cos5x - 25 sin5x}{1586} \Big] \ \cdots \cdots (2)

  • Complete solution y = C.F. + P.I.

The solution is the sum of C.F. and P.I. Therefore, y = C.F. + P.I. = C_1 e^{-6x} + C_2 e^{x} + \frac{1}{2} \Big[ \frac{sin3x - cos3x}{30} + \frac{31cos5x - 25 sin5x}{1586} \Big]

Hence, the solution of the given differential equation is y = C_1 e^{-6x} + C_2 e^{x} + \frac{1}{2} \Big[ \frac{sin3x - cos3x}{30} + \frac{31cos5x - 25 sin5x}{1586} \Big]

Similar questions