Math, asked by aryampalve, 4 months ago

(D^2+9) y=sec 3x solve linear differential equation using general method​

Answers

Answered by durgeshbishi2
1

Answer: y(x) = C_{1} cos 3x+C_{2} sin 3x+\frac{cos3xlog(cos3x)}{9} +\frac{xsin3x}{3}

Step-by-step explanation:

As the differential equation is

(D^{2}+9)y=sec3x,\\ Where D = \frac{d}{dx},

As by the Auxiliary equation is (D^{2} +9)=0

⇒ D=±3i

Hence, C. F is,

y_{c} = C_{1}cos 3x +C_{2} Sin 3x,

Now we take y_{1} =cos 3x, y_{2}=sin3x

w = \left[\begin{array}{cc}y_{1} &y_{2}\\y'_{1}&y'_{2}\end{array}\right] =\left[\begin{array}{cc}cos3x &sin 3x\\-3sin3x&3cos3x\end{array}\right] =3

As particular integral is,

y_{p} =-y_{1} \int\limits \frac{y_{2}X }{w} dx+y_{2} \int\limits\frac{y_{1} X}{w} dx

=-cos3x \int\limits \frac{sin3xsin3x}{3} dx+sin3x\int\limits \frac{cos3xsec3x}{3} dx\\=-\frac{cos3x}{3}\int\limits tan3xdx+\frac{sin3x}{3} \int\limits dx\\=\frac{cos3xlog(cos3x)}{9} +\frac{xsin3x}{3}

As the general method y(x)=y_{c} +y_{p}

y(x) = C_{1} cos 3x+C_{2} sin 3x+\frac{cos3xlog(cos3x)}{9} +\frac{xsin3x}{3}

#SPJ3

Similar questions