Math, asked by amatya890, 3 months ago

(d^(2)y)/(dx^(2)) 5(dy)/(dx) 6x
solve​

Answers

Answered by allysia
2

Answer:

y = a{e}^{2x}  + b {e}^{3x}

Step-by-step explanation:

To solve,

 \dfrac{ {d}^{2}y }{d {x}^{2} }  - 5 \dfrac{dy}{dx}  + 6y = 0

Let,

y = a {e}^{kx}

and so

 \dfrac{dy}{dx}  = \dfrac{d(a {e}^{kx} )}{dx}  = ak {e}^{kx}

then,

 \dfrac{d^{2} y}{d {x}^{2} }  =  \dfrac{d(ak {e}^{kx} )}{dx}  = a  {k}^{2} {e}^{kx}

Now substituting these in the equation:

a  {k}^{2} {e}^{kx}   - 5ak {e}^{kx}   +  6a {e}^{kx} = 0 \\  \implies  {k}^{2} - 5k + 6 = 0  \\  \implies \:  {k}^{2}  - 3k - 2k + 6 = 0 \\  \implies k(k - 3) - 2(k - 3) = 0 \\   \implies \: (k - 3)(k - 2) = 0

Therefore k = 2,3

Since the roots are different therefore,

The solution will be,

y = a{e}^{2x}  + b {e}^{3x}

Similar questions