Math, asked by ZAHIDNOOR, 5 months ago

(d^2 y)/〖dx〗^2 +dy/dx+y=e^2x​

Answers

Answered by mathdude500
2

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

solve \:  \frac{ {d}^{2}y }{ {dx}^{2} }  + 2 \frac{dy}{dx}  + y =  {e}^{2x}  \\ its \: symbolic \: form \: is \: ( {D}^{2}  + 2D + 1)y =  {e}^{2x}  \\ so \: auxillary \: equation \: is \:  \\ {D}^{2}  + 2D + 1 = 0 \\  {(D + 1)}^{2}  = 0 \\  =  >  \: D =  - 1,  - 1 \\ so \: C.F. \:  = (a + bx) {e}^{ - x}  \\

Particular Integral, P.I.  =  \frac{1}{ {(D + 1)}^{2} }  {e}^{2x}  \\  =  \frac{1}{ {(2 + 1)}^{2} }  {e}^{2x}  \\  =  \frac{1}{9}  {e}^{2x}

\large\bold\red{Complete solution = C.F. + P.I.}

\small\bold\red{ = (a + bx) {e}^{ - x} +  \frac{1}{9}   {e}^{2x} }

\huge \fcolorbox{black}{cyan}{♛hope \: it \: helps \: you♛}

Similar questions