Math, asked by eliana2, 1 year ago

d^2y/dx^2+3dy/dx-10y=3x^2

Answers

Answered by Swarup1998
19
\underline{\textsf{Solution :}}

\mathsf{Given,\:\frac{d^{2}y}{dx^{2}}+3\frac{dy}{dx}-10y=3x^{2}...(i)}

\boxed{\textsf{Finding C.F.}}

\textsf{Let, the auxiliary equation be}

\mathsf{m^{2}+3m-10=0}

\implies \mathsf{(m+5)(m-2)=0}

\implies \mathsf{m = -5\:,\:2}

\therefore \mathsf{C.F.=C_{1}e^{-5x}+C_{2}e^{2x}}

\boxed{\textsf{Finding P.I.}}

\mathsf{Let,\:y_{p}=Ax^{2}+Bx+C}

\mathsf{Then,\:Dy_{p}=2Ax+B}

\&\:\mathsf{D^{2}y_{p}=2A}

\textsf{From (i), we get}

\mathsf{D^{2}y_{p}+3Dy_{p}-10y_{p}=3x^{2}}

\to \tiny{\mathsf{2A+3(2Ax+B)-10(Ax^{2}+Bx+C)=3x^{2}}}

\to \tiny{\mathsf{-10Ax^{2}+(6A-10B)x+(2A+3B-10C)=3x^{2}}}

\textsf{Equating coefficients, we get}

\mathsf{-10A=3\implies \boxed{A=-\frac{3}{10}}}

\mathsf{6A-10B=0}

\to \mathsf{6(-\frac{3}{10})-10B=0}

\to \mathsf{10B=-\frac{9}{5}}

\to \boxed{\mathsf{B=-\frac{9}{50}}}

\mathsf{2A+3B-10C=0}

\to \mathsf{2(-\frac{3}{10})+3(-\frac{9}{50})-10C=0}

\to \mathsf{10C=-\frac{3}{5}-\frac{27}{50}}

\to \mathsf{10C=-\frac{57}{50}}

\to \boxed{\mathsf{C=-\frac{57}{500}}}

\therefore \mathsf{y_{p}=-\frac{3}{10}x^{2}-\frac{9}{50}x-\frac{57}{500}}

\textsf{Hence, the complete solution be}

\mathsf{y=C.F.+y_{p}}

\mathsf{=C_{1}e^{-5x}+C_{2}e^{2x}-\frac{3}{10}x^{2}-\frac{9}{50}x-\frac{57}{500}}
Similar questions