Math, asked by vinaysingh9531, 23 days ago

d^2y/dx^2+3dy/dx+2y=4cos^2x

Answers

Answered by student1668
3

Answer:

Symbolic form of the given equation, (D2 + 3D + 2)y = eex Auxiliary equation becomes D2 + 3D + 2 = 0 or D = –1, –2. C.F. = c1e– x + c2e– 2x

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{ {dx}^{2} }  + 3\dfrac{dy}{dx}  + 2y \:  =  \:  {4cos}^{2}x

The symbolic form of the equation is

\rm :\longmapsto\: ({D}^{2} + 3D + 2)y =  {4cos}^{2}x

So, Auxiliary equation is

\rm :\longmapsto\: {D}^{2} + 3D + 2 =  0

\rm :\longmapsto\: {D}^{2} + 2D  + D+ 2 =  0

\rm :\longmapsto\:D(D + 2) + 1(D + 2) = 0

\rm :\longmapsto\:(D + 2)(D + 1) = 0

\bf\implies \:D =  - 1 \:  \: or \:  \: D =  - 2

So,

\boxed{ \bf{ \:C F. = a {e}^{ - x} + b {e}^{ - 2x}}}

To evaluate Particular Integral, P. I.

\rm :\longmapsto\:P. I.  = \dfrac{1}{ {D}^{2}  + 3D + 2}  {4cos}^{2}x

\rm \:  =  \:  \: \dfrac{1}{ {D}^{2}  + 3D + 2} 2( {2cos}^{2}x)

\rm \:  =  \:  2\: \dfrac{1}{ {D}^{2}  + 3D + 2} ( 1 + cos2x)

\rm \:  =  \:  2\: \dfrac{1}{ {D}^{2}  + 3D + 2}(1) + \dfrac{1}{ {D}^{2}  + 3D + 2}(cos2x)

\rm \:  =  \:  2\: \dfrac{1}{ {1}^{2}  + 3(1) + 2} + \dfrac{1}{ { - 2}^{2}  + 3D + 2}(cos2x)

\red{\bigg \{ \because \:  {D}^{2}  =  -  {2}^{2} \bigg \}}

\rm \:  =  \: \: \dfrac{2}{6} + \dfrac{1}{ -  4 + 3D + 2}(cos2x)

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{1}{ 3D  -  2}(cos2x)

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{3D + 2}{ (3D  -  2)(3D + 2)}(cos2x)

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{3D + 2}{ {9D}^{2} - 4}(cos2x)

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{3D + 2}{  - 9{(2)}^{2} - 4}(cos2x)

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{3D + 2}{  - 36 - 4}(cos2x)

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{3D(cos2x) + 2cos2x}{  -40}

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{3( - sin2x \times 2)+ 2cos2x}{  -40}

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{ - 3sin2x+ cos2x}{  -20}

\rm \:  =  \: \: \dfrac{1}{3} + \dfrac{ 3sin2x -  cos2x}{20}

Hence, The complete solution is

\boxed{ \sf{ \:y = C F. + P. I. }}

\rm \: y =  \: \: a {e}^{ - x}  + b {e}^{ - 2x} +  \dfrac{1}{3} + \dfrac{ 3sin2x -  cos2x}{20}

Similar questions