Math, asked by ss3280666, 10 months ago

d^2y/dx^2+dy/dx+y=sin2x​

Answers

Answered by MaheswariS
8

\underline{\textbf{Given:}}

\mathsf{\dfrac{d^2y}{dx^2}+\dfrac{dy}{dx}+y=sin2x}

\underline{\textbf{To find:}}

\textsf{Solution of the given differential equation}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{d^2y}{dx^2}+\dfrac{dy}{dx}+y=sin2x}

\textsf{Characteristic equation is}

\mathsf{m^2+m=-1}

\textsf{To make as a perfect square}

\mathsf{m^2+m+\dfrac{1}{4}=-1+\dfrac{1}{4}}

\mathsf{\left(m+\dfrac{1}{4}\right)^2=\dfrac{-3}{4}}

\mathsf{\left(m+\dfrac{1}{2}\right)^2=\dfrac{3i^2}{4}}

\mathsf{m+\dfrac{1}{2}=\pm\dfrac{\sqrt{3}}{2}i}

\mathsf{m=\dfrac{-1}{2}\pm\dfrac{\sqrt{3}}{2}i}

\textsf{The complementary function is}

\mathsf{e^{\frac{-1}{2}x}[A\,cos\dfrac{\sqrt{3}}{2}x+B\,sin\dfrac{\sqrt{3}}{2}x]}

\underline{\mathsf{Particular\,integral}}

\mathsf{=\dfrac{sin2x}{D^2+D+1}}

\mathsf{=\dfrac{sin2x}{-4+D+1}}\;\;\;\;D^2\implies\,-4  

\mathsf{=\dfrac{sin2x}{D-3}}  

\mathsf{=\dfrac{sin2x}{D-3}{\times}\dfrac{D+3}{D+3}}  

\mathsf{=\dfrac{(D+3)sin2x}{D^2-9}}  

\mathsf{=\dfrac{D(sin2x)+3\,sin2x}{-4-9}}  

\mathsf{=\dfrac{(cos2x)2+3\,sin2x}{-13}}  

\mathsf{=\dfrac{-(2\,cos2x+3\,sin2x)}13}}  

\textsf{The general solution is}

\mathsf{y=C.F+P.I}

\mathsf{y=e^{\frac{-x}{2}}[A\,cos\dfrac{\sqrt{3}}{2}x+B\,sin\dfrac{\sqrt{3}}{2}x]-\dfrac{(2\,cos2x+3\,sin2x)}{13}}

\underline{\textbf{Find more:}}

The complementary function of (D2 + 169)y = 0 isa. Acos 12x + Bsin 12x

b. A cos 13x + B sin 13x

C. A cos 15x + B sin 15x

Acos 25x + Bsin 25x

d​

https://brainly.in/question/36564867

Answered by fatihimcem
0

Answer:

Step-by-step explanation:

Similar questions