Math, asked by sr1023shweta, 10 months ago

(D^4 - D^3 - 9D^2 - 11D - 4)y = 0​

Answers

Answered by Anonymous
19

ANSWER

given \: differential \: equation \: is \\( D {}^{4}  \:  - D {}^{3}  \:  - 9D {}^{2}  \:   - 11D \:   - 4  \:  )y = 0 \\  \\ its \: auxiliary \: equation \: is \\  \\ m {}^{4}  - m {}^{3}  - 9m {}^{2}  - 11m - 4 = 0 \\  \\ (m  + 1)(m {}^{3}  -2 m {}^{2}  - 7m   -  4) = 0 \\  \\( m    +  1) \:  \: (m {}^{3}  - 2m {}^{2}  - 7m - 4) = 0 \\  \\ (m  +  1)(m  +  1)(m {}^{2}  - 3m - 4) = 0 \\  \\ (m  +  1)(m  + 1 )(m - 4)(m + 1) = 0 \\  \\ therefore \:  \:   m =  - 1 \:  - 1 \:  - 1 \:  \: 4 \\  \\ hence \:  \: c.f \:  \: of \:  given \:  differential \: equation \: is \\  \\ c.f \:  \:  = (k1 + k2x + k3x {}^{2} )e {}^{ - 1}  + k4e {}^{4}  \\  \\ where \:  \: k1 \:  \: k2 \:  \: k3 \:  \: k4 \:  \: are \: real \: constant

Similar questions