Math, asked by masingh1947, 1 year ago

d=5, s9=75, find n and a9

Answers

Answered by lublana
10

Given that common difference d=5

sum of 9 terms S9=75

S9 means n=9

So we will be going to use sum of n terms formula of arithmetic sequence.

Which is given by:

 S_n=\frac{n}{2}(2a+(n-1)d)

Plug the given values

 75=\frac{9}{2}(2a+(9-1)*5)

 75=\frac{9}{2}(2a+(8)*5)

 75=\frac{9}{2}(2a+40)

 75=\frac{9}{2}2(a+20)

 75=9(a+20)

 \frac{75}{9}=a+20

 \frac{25}{3}=a+20

 \frac{25}{3}-20=a

 \frac{25}{3}-20*\frac{3}{3}=a

 \frac{25}{3}-\frac{60}{3}=a

 \frac{25-60}{3}=a

 \frac{-35}{3}=a

Now we need to find a9 what is 9th term so we will use following formula

 a_n=a+(n-1)d

where  a=\frac{-35}{3} , n=9, d=5

 a_9=\frac{-35}{3}+(9-1)*5

 a_9=\frac{-35}{3}+8*5

 a_9=\frac{-35}{3}+40

 a_9=\frac{-35}{3}+40*\frac{3}{3}

 a_9=\frac{-35}{3}+\frac{120}{3}

 a_9=\frac{85}{3}

Hence final answer is n=9,  a_9=\frac{85}{3} .

Similar questions